
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Migrating Angular-based web apps to
Web Components - A case study at

30MHz

Author: Sander Ronde (2639938)

1st supervisor: Ivano Malavolta
daily supervisor: Dara Dowd (30MHz)

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

July 16, 2021

Abstract

Since 2018, a set of technologies together referred to as Web Components are
supported in all major browsers. Web Components are a set of technologies
that enable support for the creation of custom HTML elements, thereby allow-
ing for encapsulation of functionally and semantically related code. In this re-
spect, they are similar to JavaScript (JS) frameworks, with the exception that
these created elements (also called Web Components) have no dependencies
and do not require any additional code to function. As such, any component
such as a button, checkbox, or switch written using Web Components func-
tions regardless of the JS framework used on a given page. This contrasts with
code written using a JS framework, which generally requires that framework
to be loaded on the page.

There are various reasons for developers to migrate an existing set of com-
ponents (generally referred to as a component library) from a JS framework
to Web Components. In this paper, we present a case study performed at
the software company 30MHz, tackling such a scenario for one of these JS
frameworks, namely the migrating of a set of Angular components to Web
Components. Angular is one of the more popular JS frameworks for build-
ing web applications. It also suffers from the previously mentioned issue of
components written in Angular not being usable in other JS frameworks. The
migration to Web Components presents a solution to this issue.

In evaluating the quality and performance of the resulting Web Components,
we find the load time of the JS code to be roughly twice as long, with render
times of individual components being about 5ms slower for a single component.
The resulting render times remain competitive with the render times of various
other component libraries. Additionally, we find indications that the impact
of the performed case study on the maintainability of the codebase containing
the source components is minimal. These findings together lead us to conclude
that the migration of Angular components to Web Components is feasible.

This migration process presents a time-saving method for developers wishing
to create a cross-framework component library based on an existing Angular
component library.

Contents

List of Figures iv

List of Tables vi

1 Introduction 1
1.1 Reason for migrating to Web Components 2

2 Background 5
2.1 The Company . 5

2.1.1 Apps . 7
2.2 Web Components . 9
2.3 Angular Elements . 9
2.4 Javascript frameworks . 10
2.5 UI Libraries . 12

3 Related Work 13
3.1 UI Libraries . 13
3.2 Angular Elements . 14
3.3 JS Framework Wrappers . 16
3.4 Metrics . 16
3.5 Load Time . 17

4 Study Design 18
4.1 Research questions . 18
4.2 Metric definitions . 18

4.2.1 Source code metrics . 19
4.2.2 Size . 20
4.2.3 Load Time . 20
4.2.4 First Paint & First Contentful Paint 20

i

CONTENTS

4.2.5 Render Time . 21
4.3 Metric targets . 21
4.4 Analysis of results . 22

5 Experimental Setup 24
5.1 Gathering components . 24
5.2 Structural Complexity . 24
5.3 Cyclomatic Complexity, Maintainability, Lines of Code 25
5.4 Machine specifications . 25
5.5 Time-sensitive metrics . 26
5.6 Size . 26
5.7 Load Time . 28
5.8 Render Time . 28
5.9 First Paint & First Contentful Paint . 30
5.10 Number of Components . 31

6 Case Study 32
6.1 Build Process . 32
6.2 Web Component Issues . 34

6.2.1 WC1: Global CSS . 34
6.2.2 WC2: Compatibility . 36
6.2.3 WC3: Tagname renaming . 37
6.2.4 WC4: Theming . 37
6.2.5 WC5: Non-string Attributes . 38
6.2.6 WC6: Complex Attributes . 39

6.3 Angular Issues . 41
6.3.1 A1: ng-deep . 41
6.3.2 A2: createCustomElement . 43
6.3.3 A3: EventEmitters . 43
6.3.4 A4: Hierarchical Injectors . 44
6.3.5 A5: ngOnInit . 46
6.3.6 A6: Casing in attribute names . 48
6.3.7 A7: Angular directives . 48
6.3.8 A8: <ng-content> . 49
6.3.9 A9: Angular Attribute Order . 50
6.3.10 A10: Bundling Angular Imports . 50

ii

CONTENTS

6.3.11 A11: Angular Ivy . 52
6.4 Optimizations . 53

6.4.1 O1: Reduce time searching for CSS 53
6.4.2 O2: Move CSS searching to initial load 54

6.5 JS Framework Wrappers . 55

7 Results 57
7.1 Render Time . 57

7.1.1 Cow Components . 57
7.1.2 UI Libraries . 58

7.2 Load Time . 64
7.2.1 Cow Components . 64
7.2.2 UI Libraries . 67

7.3 Bundle Size . 70
7.4 Paint time . 71
7.5 Quality of Web Components . 71
7.6 Time spent on the project . 77

8 Threats to Validity 78
8.1 Conclusion Validity . 78
8.2 Internal Validity . 78
8.3 Construct Validity . 79
8.4 External Validity . 79

9 Discussion 80
9.1 Discussion of Results . 80
9.2 Checklist for Migration to Web Components 82

9.2.1 Checklist . 82

10 Conclusion 85
.1 Code for creating a Hierarchical Injector in an Angular Elements component 87
.2 Code used for render-on-demand functions for various JS frameworks 89
.3 Render times for all components . 90

References 93

iii

List of Figures

2.1 Widgets in the 30MHz dashboard . 6
2.2 An image widget in the 30MHz dashboard 6
2.3 An example of a component that provides type hints (these hints are also

referred to as intellisense) . 10
2.4 An example of a component without type hints 10
2.5 A diagram representing the relationship between the JS framework and Web

Components . 11

5.1 An example of a Chrome profiler trace performed during a bundle load.
The orange bar labeled “Evaluate Script” indicates the total load time and
spans 308.54ms. 28

5.2 The render pipeline in chrome. 29
5.3 An example of a Chrome profiler trace performed during the render of a

component. The bar labeled “window.setVisibleComponent” indicates our
start time. The end time falls within the red circle, a zoomed in version of
which can be seen in Figure 5.4. 30

5.4 An example of a Chrome profiler trace performed during the render of a
component. The bar labeled “composite layers” signals our end time. Note
that this falls just after a bar labeled “paint”, signaling the paint event
before the last composite event. 31

6.1 Categories into which approaches to passing complex attributes can be
grouped . 39

7.1 Render times of a single Button, Switch, or Input component (CC UI only) 59
7.2 Render times of ten Button, Switch, or Input components (CC UI only) . . 59

iv

LIST OF FIGURES

7.3 Render times of one hundred Button, Switch, or Input components (CC UI
only) . 60

7.4 Render times of a single Button. The reduced size CC UI library is the
build of the library with less components, as described in Section 5.6. . . . 61

7.5 Render times of 10 Buttons. The reduced size CC UI library is the build of
the library with less components, as described in Section 5.6. 62

7.6 Render times of 100 Buttons. The reduced size CC UI library is the build
of the library with less components, as described in Section 5.6. 63

7.7 Load time of the main JS bundle (CC UI only, without Angular wrapper). . 65
7.8 Load time of the main JS bundle (CC UI only). 66
7.9 Load time of the main JS bundle (without Angular wrapper). 68
7.10 Load time of the main JS bundle. 69
7.11 Size of the main JS bundle. 70
7.12 First paint metrics for the various demo pages. 72
7.13 Cyclomatic complexity of the various UI libraries. 73
7.14 Lines of code of the various UI libraries. 74
7.15 Structural complexity of the various UI libraries. 75
7.16 Maintainability of the various UI libraries. 76

1 Render times of a single Button, Switch, or Input component 91
2 Render times of ten Button, Switch, or Input components 91
3 Render times of one hundred single Button, Switch, or Input components . 92

v

List of Tables

4.1 Metrics used in this study . 19
4.2 Collected UI libraries, the number of github stars and whether they were

included in the study . 23

6.1 Sections in chronological order along with their relative complexities 33

vi

1

Introduction

Web Components 1 are a set of technologies recently added to the web platform that
allow for the definition of custom HTML elements. These custom HTML elements allows
for encapsulation of functionally and semantically related code. In this purpose, these
Web Components are similar to JavaScript (JS) frameworks such as ReactJS 2, Angular 3,
Svelte 4, and Vue 5. What separates Web Components from JS frameworks is the fact that
Web Components are native to web browsers and do not require external code to function.
As of 2018, Web Components are supported in all major browsers 6, marking the moment
at which Web Components are supported across all platforms and browsers without any
additional code being required. This places Web Components in a special position where
any individual Web Component can be added to a web page with the guarantee that it
will work. This intercompatibility allows developers to create a single Web Component
ranging from simple components such as buttons and checkboxes to complex components
such as charts and video players. This is in contrast to components that are created using
a JS framework. These will generally only work if the component’s framework is the same
framework the web page uses. This lack of compatibility significantly reduces the pool of
components that developers have access to, thereby reducing the community’s ability to
share code with each other in the form of components.

One solution to this problem is providing the ability to migrate components that have
been written in a JS framework to Web Components. This effectively frees developers from

1https://www.w3.org/TR/2013/WD-custom-elements-20130514/#about
2https://reactjs.org/
3https://angular.io/
4https://svelte.dev/
5https://vuejs.org/
6https://caniuse.com/?search=webcomponents

1

https://www.w3.org/TR/2013/WD-custom-elements-20130514/#about
https://reactjs.org/
https://angular.io/
https://svelte.dev/
https://vuejs.org/
https://caniuse.com/?search=webcomponents

1.1 Reason for migrating to Web Components

the constraints of a JS framework and allows the created Web Components to be used
anywhere. There are various reasons to migrate a component (or multiple components)
to Web Components. One of which is the ability to have the same components be re-
used across different teams that each use a different JS framework. Another reason is the
ability to provide created components to the open-source community, thereby allowing
other developers to make use of these components. In this paper, we present a case study
targeting another reason for this migration process, namely the migration of a design
library to Web Components for use by a third party. This reason is introduced below.

1.1 Reason for migrating to Web Components

Many companies apply a unified design language to their products. A design language
is an overarching style that guides the design of products it applies to, generally being
spread over a company’s products. Its purpose is to provide users of products with a
unique but consistent look and feel across all products. In order to maintain this design
language across apps created on their platform, companies tend to provide third-party
app developers with such a design language to use for their apps. Examples of such a
design language being provided to developers are Google’s Android 1, Apple’s iOS 2, and
Zendesk’s Garden 3. In order to aid developers in creating apps that use this design
language, they are often provided with a set of basic components that follow this design
language. Examples of UI components include buttons, inputs, layouts, and switches.
Such a set of components is commonly called a UI library or design library. In addition
to containing just UI-related components, these UI libraries can also contain components
that focus on for example API access, accessibility, or analytics. Since the design language
a company provides is generally applied to its own products as well, the overlap between
its provided UI library and its internally used UI library is relatively large. As such, it
would save a lot of time if the UI library that is provided to third parties can be generated
from the internally used UI library (given that it can not be provided to developers as-is).

An example of such a scenario is the one that is present at 30MHz. 30MHz is a technology
company in the agriculture industry looking to provide third parties with a UI library.
To save time, both now and in future maintenance, it would be best to generate this UI
library from the internally used UI library. This UI library is unable to be provided to third

1https://material.io/
2https://developer.apple.com/design/
3https://garden.zendesk.com/

2

https://material.io/
https://developer.apple.com/design/
https://garden.zendesk.com/

1.1 Reason for migrating to Web Components

parties as-is. Both because it is interwoven with the rest of the codebase (which should
not become publicly available) and because it is written in the Angular JS framework.

Angular is a JS framework for building single-page web applications. Angular is one
of many JS frameworks. A few of the most popular JS frameworks as of 2020 1 include
ReactJS, Vue, Svelte, and the previously mentioned Angular. As mentioned before, code
written in one framework is generally not usable by other frameworks. They are essentially
written in different programming languages. Locking third-party developers to a single JS
framework (in this case, Angular) will provide for a worse development experience as they
are given less freedom of choice. Since the popularity of other JS frameworks is increasing,
this problem is likely to worsen over time, with developers preferring to use a different JS
framework over Angular. To get around both the issue of the code being interwoven and
the issue of the source code being written in Angular, a solution to these problems has to
be devised.

In this thesis, we attempt to find this solution through a case study at 30MHz. Our
approach is to migrate the existing Angular components to the previously mentioned Web
Components 2. Because of their being usable by every JS framework, Web Components
provide a perfect target format for this UI library. In order to migrate the Angular
components to Web Components, we use Angular Elements 3. Angular Elements is a JS
package that aides in the migration of Angular components to Web Components. After
creating this Web Component UI library, we create wrappers for JS frameworks that do
not natively support Web Components yet. Additionally, we generate documentation and
individual component demo pages for developers to use.

In this paper, we describe this migration process and evaluate its effectiveness. This
evaluation is done through the collection of various metrics. These are collected on both
the original Angular components, the Web Components library, and the various wrappers,
as well as a set of popular JS component libraries. We then compare the created Web
Components library to the internal 30MHz UI library and other component libraries in
the field, allowing us to assess the feasibility of this migration process.

The contributions of this paper are the following:

• We present a case study where we perform the migration of Angular components to
Web Components, documenting issues faced along the way. These issues are likely
to be faced in similar projects.

1https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/
2https://www.w3.org/TR/2013/WD-custom-elements-20130514/#about
3https://angular.io/guide/elements

3

https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/
https://www.w3.org/TR/2013/WD-custom-elements-20130514/#about
https://angular.io/guide/elements

1.1 Reason for migrating to Web Components

• We present a checklist going over the steps required to perform this migration.

• We evaluate the quality and performance of the resulting Web Component UI library
and its wrappers. In order to evaluate the impact of this migration process on
performance, we compare the Web Component UI library with the original UI library.
Additionally, we compare the Web Component UI library with other UI libraries in
the field, allowing us to evaluate its relative performance and quality.

• We evaluate the feasibility of applying this migration process for businesses. Firstly
we measure the time taken to perform this case study, getting an understanding
of the cost of the case study. Secondly, we assess the impact on both the existing
codebase and other developers we get a view of how disrupting this project is.

• We provide a GitHub repository that contains the code used for performing the
measurements 1. Additionally, it contains the resulting data, visualizations, and the
code used to generate these visualizations.

1https://github.com/sanderronde/master-thesis

4

https://github.com/sanderronde/master-thesis

2

Background

This case study was performed at 30MHz, specifically within the context of their software
platform. This section describes the company (30MHz), their software platform (the
dashboard), and the problem solved by the case study.

2.1 The Company

30MHz is a technology company in the agriculture industry. They offer sensors that collect
various types of data, all within the context of agriculture. Examples of types of data
include temperature, humidity, and air pressure. 30MHz also provides their customers with
a dashboard that allows them to view the collected data. An example of this dashboard
can be seen in Figure 2.1. This dashboard is a web app that, as of this case study, is using
Angular 10. Data is fetched from a backend, and the various types of data are displayed
in different ways using so-called widgets. There are currently three types of widgets:

• Chart: A chart widget displays the value of the data over time and provides a good
overview of the history of the data up to a given point. An example of a chart can
be seen in Figure 2.1 in all but the top-right section.

• Gauge: Gauge widgets display the current value of a sensor in a given range. It
allows the user to see whether the current value is still within the correct range. An
example of a gauge widget can be found on the top-right in Figure 2.1.

• Image: Image widgets display the value of a sensor on a specific location of an image.
This widget can be used to, for example, display the temperature at various sites on
a map. An example of an image widget can be found in Figure 2.2.

5

2.1 The Company

Figure 2.1: Widgets in the 30MHz dashboard

Figure 2.2: An image widget in the 30MHz dashboard

6

2.1 The Company

2.1.1 Apps

The data collected by 30MHz can be utilized in many ways. Companies with domain
knowledge and expertise in certain areas (such as third parties) can provide customers
with new insights and information that simple graphs can not. Because 30MHz itself
does not have this domain knowledge and does not have the resources to create every
single possible implementation of this knowledge (in the form of a widget or page in
the dashboard), 30MHz decided to allow third-party developers to develop them instead.
There are currently two implementations:

• Widgets: A Widget in the dashboard takes data from one or more sensors and
displays it. These are made to provide information at a glance and are fairly small
when it comes to screen space, as can be seen in Figure 2.1. An example would be
a new way to display the amount of light a plant is getting by showing a sun icon if
the plants can grow (it is daytime) and a moon icon if they can not (it is nighttime).

• Apps: Apps are full pages in the web app. These fill the entire screen (bar some
30MHz branding) and provide richer and more interactive experiences. An example
would be a page where users can tune parameters (such as the number of crops,
amount of watering) and see a prediction of their revenue. This prediction can be
based (in part) on sensor data.

Since these apps will essentially be pages in the 30MHz dashboard and will feel like
part of the platform, it is important that they follow the same design as the rest of
the dashboard. A consistent design ensures that users are familiar with the apps and
that visual consistency across the platform is not broken. This concept has been applied
on Google’s Android through Material Design 1 and Zendesk Garden 2 among others.
Importantly, these companies all provide app developers with a set of components to help
them maintain the intended design language. Such a set of components is generally referred
to as a UI library. Similarly, 30MHz wants to provide their third-party app developers
with a UI library. In this paper, we will refer to the UI library 30MHz will provide to third
parties as the Cow Components UI Library (or CC UI Library). It is named after the logo
of 30MHZ, a cow. There already is an internal UI library that covers the basic set of UI
components (among others buttons, an input, a date picker), but since it is interwoven
with other internal code, its source code can not just be provided to third-party developers.

1https://material.io/
2https://garden.zendesk.com/

7

https://material.io/
https://garden.zendesk.com/

2.1 The Company

Additionally, they have been written in Angular 1, meaning that any developers who wish
to develop their app in a different JavaScript (JS) framework cannot do so. Looking at
the most popular web frameworks in the latest Stack Overflow Developer Survey 2 (2020
as of the writing of this paper), we can conclude that the chance that a developer wishes
to use a different JS framework is quite large. In order to still provide developers with a
CC UI library, there are two options.

• Write components from scratch in a framework-agnostic format and provide them
to developers. Then keep them up to date with the internal set of components by
changing one as the other changes.

• Set up automatic migration from the set of internal components to a framework-
agnostic format.

The immediately apparent problem with the first option is that developers are main-
taining two separate copies of very similar code. This causes several issues. Firstly, the
time spent maintaining a component is doubled. Additionally, feature differences be-
tween the Angular framework and the framework-agnostic format we choose will lead to
added engineering time. Some things that make use of the Angular framework might need
workarounds in the other format and the other way around. Another issue with the first
option is that the components have to be written entirely from scratch. While writing
components from scratch would be manageable for simple components such as buttons, it
is unfeasible for more complex components. One such component for which the rewriting
process would prove difficult is the 30MHz chart component. This component is vital to
the 30MHz design library, seeing as it displays the sensor data. The source code for the
chart is tightly coupled with the rest of the platform, referencing about half of the source
files in the dashboard through its dependencies. Rewriting all of this code in another
framework is wholly unfeasible and not worth the effort, leading us to explore the second
option.

While the second option is not an easy one and will likely be a very complex process
to set up, it will scale a lot better. Once it is set up, any new components will be
automatically migrated, and any changes will be propagated automatically. In the long
run, this automatic migration should save time. This option is the one 30MHz eventually
decided on. Next, a framework-agnostic format needs to be chosen to facilitate this process.

1https://angular.io/
2https://insights.stackoverflow.com/survey/2020

8

https://angular.io/
https://insights.stackoverflow.com/survey/2020

2.2 Web Components

2.2 Web Components

When it comes to choosing a framework-agnostic format for a UI library, there are very
few options. Looking at the literature, we find Quid (1), a program that allows code
written in a domain-specific language (DSL) to be used to generate components in various
frameworks. It currently supports the generating of Web Components 1, Stencil 2, Angular
and Polymer 3 components. The authors do mention it should only be used for rapid
prototyping. Since it only supports a fairly small set of supported frameworks, and it has
the problem of requiring a DSL which the Angular code would have to be migrated to, we
choose not to use Quid as the target format.

This brings us to another option, namely Web Components. Web Components (also
known as Custom Elements) are a technology proposed in 2013 4 and implemented in
major browsers in 2018 5. It allows for the creation of custom HTML elements using
JavaScript. These elements can then be used like regular HTML elements. Since every
JS framework has support for native HTML elements and almost every framework has
full support for Web Components 6, we can cover most JS frameworks by using Web
Components as our target format.

2.3 Angular Elements

To perform the migration of Angular components to Web Components, we use Angular
Elements 7. Angular Elements is a JS package that allows for the migration of Angular
components to Web Components. It does this by changing the way in which components
are mounted. Angular apps are typically mounted to the page by the user through a call
to the bootstrapModule function. Consequently, the bootstrap component is mounted
to the page. This bootstrap component is responsible for containing the rest of the appli-
cation. After it is mounted, child components are mounted and rendered within its root
recursively. Angular Elements works slightly differently. Components registered as Web
Components through Angular Elements are instead rendered whenever an HTML element
with the registered tag is added to the DOM (document object model). The DOM is the

1https://developer.mozilla.org/en-US/docs/Web/Web_Components
2https://stenciljs.com/
3https://www.polymer-project.org/
4https://www.w3.org/TR/2013/WD-custom-elements-20130514/#about
5https://caniuse.com/?search=webcomponents
6https://custom-elements-everywhere.com/
7https://angular.io/guide/elements

9

https://developer.mozilla.org/en-US/docs/Web/Web_Components
https://stenciljs.com/
https://www.polymer-project.org/
https://www.w3.org/TR/2013/WD-custom-elements-20130514/#about
https://caniuse.com/?search=webcomponents
https://custom-elements-everywhere.com/
https://angular.io/guide/elements

2.4 Javascript frameworks

model containing the elements on a page and how they are positioned relative to each
other. Adding an element to the DOM adds it to the webpage. When such a component
is rendered, a new root is created in place of this new HTML element. Instead of a single
root in which everything is rendered (as is the case in a typical Angular app), components
are all rendered in their own local root. We use Angular Elements for the migration to
Web Components in this case study since it appears to be the only package providing this
capability.

Figure 2.3: An example of a component that provides type hints (these hints are also referred
to as intellisense)

Figure 2.4: An example of a component without type hints

2.4 Javascript frameworks

While migrating components to Web Components makes them usable in most JS frame-
works, they do not provide a perfect experience. The first reason for this is them not being
perfectly compatible with every JS framework. As of the writing of this paper, there are

10

2.4 Javascript frameworks

Figure 2.5: A diagram representing the relationship between the JS framework and Web
Components

still some issues preventing them from working entirely in ReactJS 1, a JS framework
created by Facebook in 2013. These issues mostly concern the passing of non-primitive
data to the components, such as JavaScript Objects, Arrays, and Functions. The second
problem is that they are not native to JS frameworks and do not integrate very well with
the tooling provided by the framework. One such tool is type hinting, in which an editor
suggests possible values to the developer. An example of type hinting provided by the
framework and editor can be seen in Figure 2.3. Compared to Figure 2.4, which shows
a component with no type hinting, Figure 2.3 provides the developer with much more
information and shows them what options are available to them. Instead of searching the
web for the available properties, these options are provided by the element’s source code
and displayed through the framework’s tooling and the editor. In order to improve the
developer experience, we will provide what we will call a wrapper for each framework. This
wrapper has two functions. Firstly, it provides the tooling mentioned above. Secondly,
it bridges the gap with JS frameworks that do not natively support Web Components
yet. This wrapper is native to the framework, being written using the language and li-
brary the framework provides. This allows the framework to infer information from the

1https://reactjs.org/

11

https://reactjs.org/

2.5 UI Libraries

wrapper’s source code. Under the hood, this wrapper still uses the components in the
Web Components UI library to render the components. This wrapper serves as glue code
between the framework and these components. By combining the two steps of migrat-
ing the original Angular components to Web Components, and the Web Components to
wrappers for frameworks, we can provide developers with an experience native to their
framework, even though the original source code uses Angular. An overview layout of the
relationship between the JS framework, the wrapper and the Web Components can be
seen in Figure 2.5.

2.5 UI Libraries

As mentioned before, a set of components that adheres to one cohesive design language is
generally referred to as a UI library or design library. There are two methods for imple-
menting a design library, with one being based on doing most of the work in JavaScript
and the other being based on shifting this work to CSS. The former is also referred to
as a design library, with the latter being called a CSS framework. The idea of a CSS
framework is to put almost all of the styles a developer will need in a single CSS file. This
includes the various variations they could need. For example, a CSS library could include
the .padding-5 selector as well as the .padding-2 selector for setting the padding of
a component. Note that the number of pixels of this padding is included in the selector.
This generally leads to relatively big CSS files, which may or may not be tree shaken.
This is in contrast to JavaScript-based UI libraries, which generally use per-component
stylesheets instead of global stylesheets. They also tend to shift numbers and sizes to
JavaScript or HTML. For example the same padding as above could be applied through
a property, i.e. <my-component padding="2"/> or <my-component padding="5"/> .
This approach has the advantage of a more per-component focus, more flexibility, and
options that are easier to discover. However, compared to CSS frameworks, JS-based UI
libraries are significantly slower. The CSS frameworks generally only append an element to
the DOM and apply some pre-computed set of classes to them, meaning they only interact
with the swift JavaScript APIs that are native to the browser. JS-based UI libraries, on
the other hand, have to take care of styling, component interactivity through various event
listeners, and changing what is rendered depending on properties. Since this performance
difference is important when it comes to measurements, a given library being a UI library
or CSS framework, is mentioned later.

12

3

Related Work

There are various fields in which the related work is important to us in this paper. Namely
related work in the area of UI Libraries, Angular Elements (and the accompanying process
of migrating to Web Components), related work on Web Components themselves, and re-
lated work on the creation of wrappers around Web Components to target JS frameworks.

3.1 UI Libraries

UI libraries are at their most basic level a set of components that follow a common design
language. These components can be written using various different JS frameworks. Mráz
et al. (2) dives into the definition of the component model, documenting the ideas behind
it and how it came to be. They then discuss Web Components and their feasibility as a
stand-alone replacement for current JS frameworks in component development. They find
Web Components to be cumbersome to use, requiring a lot of boilerplate code (repeated
sections of code with little to no variety (3)). They argue that this is the reason that other
JS libraries are becoming more popular. They provide more abstraction, less boilerplate,
and more ease of use. Further, they discuss two specific JS frameworks in detail, namely
LitElement 1 (an abstraction of Web Components) and ReactJS 2 (a stand-alone library
for creating components). They find them both to be capable frameworks, both filling
their own niche. Finally, they note that both are essentially interoperable, with Web
Components almost being natively usable in ReactJS 3. Ky Nam et al. (4) makes use of
these components to build a UI library. They document the building of a UI library that
uses ReactJS as a JS framework. They draw inspiration from other ReactJS UI libraries

1https://lit-element.polymer-project.org/guide
2https://reactjs.org/
3https://custom-elements-everywhere.com/

13

https://lit-element.polymer-project.org/guide
https://reactjs.org/
https://custom-elements-everywhere.com/

3.2 Angular Elements

such as Material-UI 1, React Bootstrap 2, and React virtualized 3. They eventually decide
to split their UI library into both a generic UI library with minimal styling (focusing on the
UI) and a Core library (responsible for handling stateful components and communicating
with the server). The end result meets their goals, having created a UI library that uses the
aforementioned technologies. Furthermore, there are many blog posts documenting the
process of creating UI libraries. In these blog posts 4 5 6 7 8, the authors provide guidance
in setting up and creating a UI library. They mainly concern the basics, explaining how
to get started with the process but not delving into the creation of complex components.
We also find numerous examples from the industry. These include but are not limited to
Svelte Material UI 9 (written in Svelte), React Bootstrap 10 (React), Angular Material 11

(Angular), Wired Elements 12 (Web Components), and Onsen 13 and SyncFusion 14 (both
multi-framework). For all but SyncFusion, the source code is freely available on GitHub,
allowing us to draw inspiration from it and look at how various problems were solved in
different UI libraries. A complete list of UI libraries can be found in Table 4.2.

3.2 Angular Elements

Research on the area of Angular Elements is very sparse. Armengol Barahona et al. (5) uses
Angular Elements for the rendering of form components. They create a form component
in Angular that is able to change the input elements it renders dynamically. It does this
by migrating Angular components to Web Components by using Angular Elements. They
are then dynamically appended to the DOM. They find Angular Elements to be a good
fit for this task, being easy to set up and easy to work with. Again blog posts on Angular

1https://material-ui.com/
2https://react-bootstrap.github.io/
3https://github.com/bvaughn/react-virtualized
4https://www.toptal.com/designers/ui/design-framework
5https://dev.to/giteden/building-a-ui-component-library-for-your-startup-4cek
6https://www.emergeinteractive.com/insights/detail/how-to-ux-ui-design-system-

component-library/
7https://codeburst.io/building-an-awesome-ui-component-library-in-2020-a85cb8bec20
8https://itnext.io/building-a-scalable-ui-component-library-4607de91955a
9https://sveltematerialui.com/

10https://react-bootstrap.github.io/
11https://material.angular.io/
12https://wiredjs.com/
13https://onsen.io/
14https://www.syncfusion.com/

14

https://material-ui.com/
https://react-bootstrap.github.io/
https://github.com/bvaughn/react-virtualized
https://www.toptal.com/designers/ui/design-framework
https://dev.to/giteden/building-a-ui-component-library-for-your-startup-4cek
https://www.emergeinteractive.com/insights/detail/how-to-ux-ui-design-system-component-library/
https://www.emergeinteractive.com/insights/detail/how-to-ux-ui-design-system-component-library/
https://codeburst.io/building-an-awesome-ui-component-library-in-2020-a85cb8bec20
https://itnext.io/building-a-scalable-ui-component-library-4607de91955a
https://sveltematerialui.com/
https://react-bootstrap.github.io/
https://material.angular.io/
https://wiredjs.com/
https://onsen.io/
https://www.syncfusion.com/

3.2 Angular Elements

Elements are numerous. In various blog posts 1 2 3 4 5 6 7 8 9 10 11 12, the authors
explain how to set up Angular Elements and how to use it to create a new component
library. These blog posts predominantly focus on creating new components or migrating
simple components through Angular Elements, not migrating larger and more complex
components. They all use new and empty projects, contrary to two other blog posts 13 14.
The authors use Angular Elements to migrate existing AngularJS (an older version of
Angular) components to the newer Angular. They do this by migrating the source code
of existing AngularJS components to Angular source code. By itself, this would break
since the application root still runs on AngularJS and is unable to handle Angular code.
By using Angular Elements to migrate the Angular code into Web Components, the Web
Components can run inside the AngularJS root. This is thanks to the low-level nature of
Web Components, allowing any framework that can render HTML elements to use them.
Through this iterative process, they can migrate components one by one, migrating the
root component once all of its children have been migrated.

Unfortunately, we were unable to find any related work on the migration of complex
Angular components to Web Components through Angular Elements. Related work seems
to focus primarily on small get-started style projects. When they focus on more complex
projects, it seems like the only use is the migration from AngularJS to Angular.

1https://netbasal.com/understanding-the-magic-behind-angular-elements-8e6804f32e9f
2https://medium.com/kitson.mac/wrapping-an-angular-app-in-a-custom-element-web-

component-angular-element-in-4-simple-steps-ded3554e9006
3https://medium.com/@smarth55/angular-elements-use-them-everywhere-including-your-

angular-app-697f8e51e08d
4https://blog.piotrnalepa.pl/2020/02/02/how-to-convert-angular-component-into-reusable-

web-component/
5https://medium.com/swlh/angular-elements-create-a-component-library-for-angular-and-

the-web-8f7986a82999
6https://www.thirdrocktechkno.com/blog/angular-elements/
7https://juristr.com/blog/2019/04/intro-to-angular-elements/
8https://studiolacosanostra.github.io/2019/07/19/Build-a-reusable-Angular-library-and-

web-component/
9https://blog.bitsrc.io/using-angular-elements-why-and-how-part-1-35f7fd4f0457

10https://www.techiediaries.com/angular/angular-9-elements-web-components/
11https://indepth.dev/posts/1116/angular-web-components-a-complete-guide
12https://indepth.dev/posts/1228/web-components-with-angular-elements
13https://blog.nrwl.io/upgrading-angularjs-to-angular-using-elements-f2960a98bc0e
14https://medium.com/capital-one-tech/capital-one-is-using-angular-elements-to-upgrade-

from-angularjs-to-angular-42f38ef7f5fd

15

https://netbasal.com/understanding-the-magic-behind-angular-elements-8e6804f32e9f
https://medium.com/kitson.mac/wrapping-an-angular-app-in-a-custom-element-web-component-angular-element-in-4-simple-steps-ded3554e9006
https://medium.com/kitson.mac/wrapping-an-angular-app-in-a-custom-element-web-component-angular-element-in-4-simple-steps-ded3554e9006
https://medium.com/@smarth55/angular-elements-use-them-everywhere-including-your-angular-app-697f8e51e08d
https://medium.com/@smarth55/angular-elements-use-them-everywhere-including-your-angular-app-697f8e51e08d
https://blog.piotrnalepa.pl/2020/02/02/how-to-convert-angular-component-into-reusable-web-component/
https://blog.piotrnalepa.pl/2020/02/02/how-to-convert-angular-component-into-reusable-web-component/
https://medium.com/swlh/angular-elements-create-a-component-library-for-angular-and-the-web-8f7986a82999
https://medium.com/swlh/angular-elements-create-a-component-library-for-angular-and-the-web-8f7986a82999
https://www.thirdrocktechkno.com/blog/angular-elements/
https://juristr.com/blog/2019/04/intro-to-angular-elements/
https://studiolacosanostra.github.io/2019/07/19/Build-a-reusable-Angular-library-and-web-component/
https://studiolacosanostra.github.io/2019/07/19/Build-a-reusable-Angular-library-and-web-component/
https://blog.bitsrc.io/using-angular-elements-why-and-how-part-1-35f7fd4f0457
https://www.techiediaries.com/angular/angular-9-elements-web-components/
https://indepth.dev/posts/1116/angular-web-components-a-complete-guide
https://indepth.dev/posts/1228/web-components-with-angular-elements
https://blog.nrwl.io/upgrading-angularjs-to-angular-using-elements-f2960a98bc0e
https://medium.com/capital-one-tech/capital-one-is-using-angular-elements-to-upgrade-from-angularjs-to-angular-42f38ef7f5fd
https://medium.com/capital-one-tech/capital-one-is-using-angular-elements-to-upgrade-from-angularjs-to-angular-42f38ef7f5fd

3.3 JS Framework Wrappers

3.3 JS Framework Wrappers

We were unable to find any research on JS framework wrappers. JS framework wrappers
do not seem to be a problem that has been tackled very often, at least in literature.
On the website custom-elements-everywhere.com 1, the authors keep track of the current
usability of Web Components in various JS frameworks. Notably, the ReactJS framework
does not fully support Web Components at the time of writing for this paper. In ReactJS,
non-primitive values (such as Objects, Arrays, and Functions) can not be passed to Web
Components, along with some other issues. As such, it is the only framework that needs
a wrapper for the UI library to function at all. Looking at how to fix this issue, we find
some proposed solutions in a blog post 2. In this blog post, the author explores various
options to tackle this problem of passing non-primitive data.

3.4 Metrics

In Chapter 4 we introduce metrics that are used to measure the quality and performance
of the created Web Component library. Looking specifically at evaluating the quality of
Web Components, a candidate for such a set of metrics is proposed by Martinez-Ortiz
et al. (6). They propose a set of metrics that together give a good overview of the quality
of a Web Component. These metrics are structural complexity (the number of import
statements for a component), cyclomatic complexity (a quantitative measure of the number
of linearly independent paths through a program’s source code (7)), maintainability (a
derivative based on complexity, lines of code, and Halstead volume (8)), completeness
(how complete the information displayed to the user is as a percentage), latency (the time
between when a request is made and when its content is received), and consistency (a time
metric reflecting how long it takes an update to take effect across different replicas of the
same component). The first three metrics are intrinsic metrics based on the source code
of the Web Component. They take into account the quality of the source code. The last
three metrics aim to capture the quality of a component as perceived by a user. They
validate their metrics in user studies, finding that the metrics correlate strongly with the
results of the user studies.

1https://custom-elements-everywhere.com/
2https://itnext.io/handling-data-with-web-components-9e7e4a452e6e

16

https://custom-elements-everywhere.com/
https://itnext.io/handling-data-with-web-components-9e7e4a452e6e

3.5 Load Time

3.5 Load Time

A similar metric for measuring the quality of a web page is the load time. Gao et al. (9)
dives into metrics that describe the load time of a page. They find that common metrics
such as onLoad and Time To First Byte fail to accurately describe the load time as
perceived by users of the page. Instead, they introduce a learning model that explains the
majority of user choices with 87% accuracy. Similarly, Nathan et al. (10) find that current
metrics do not describe the perceived load time of a page well. They define a new metric
called Ready Index, aimed to capture interactivity explicitly. They then compare their
metric to prior load time metrics, finding that they underestimate or overestimate the
true load time of a page by between 24% and 64%. Van Riet et al. (11) builds upon this
work, also performing a case study at 30MHz in which they achieve a 97.56% reduction
in the time for the First Contentful Paint on mobile devices. The First Contentful Paint
is a metric that describes the time until the first element on the page is rendered.

17

4

Study Design

4.1 Research questions

Our goal in this paper is to evaluate the effectiveness of migrating Angular components
to Web Components. Based on this goal, we devise a single research question:

RQ1: How technically viable is the process of migrating Angular components
to Web Components?
In answering this research question, we assess whether the migration process is possible
at all, what a possible performance impact could be, and how the resulting migrated com-
ponents relate to other component libraries in the field.

4.2 Metric definitions

In order to answer the above research questions, we need to define metrics. These allow
us to compare the resulting Web Component library both to the UI library and to other
UI libraries. This allows us to get a better understanding of the quality and performance
of the created Web Component library relative to other UI libraries. We can divide the
used metrics into two categories. The first is measuring the quality of the resulting CC
UI library. In order to do measure the quality, we compare the components in the CC UI
library to the Angular components they originate from, as well as to various UI libraries.
We perform this comparison using various metrics divided into three groups. These groups
are complexity, size, and performance. We perform this comparison both at component

18

4.2 Metric definitions

granularity and at UI library granularity. A full list of these metrics, as well as a brief
description, can be seen in Table 4.1. A detailed explanation of these metrics follows.

ID Group Metric Granularity Description

SC Complexity Structural complexity Component The number of import statements
for a component. Collected for a
source file and all of its dependen-
cies for up to two iterations

CC Complexity Cyclomatic complexity Component A quantitative measure of the
number of linearly independent
paths through a program’s source
code (7)

LOC Size Lines of code Component The number of lines of code in a
given component’s source file

SI Size Size UI Library The file size of the bundled up li-
brary

MA Performance Maintainability Component A derivative based on complexity,
lines of code and Halstead vol-
ume (8)

RT Performance Render Time Component The render time of a given compo-
nent

LT Performance Load Time UI Library Parsing and running time of the
bundled up library in the browser
(without download time)

NOC Performance Number of Components UI Library The number of components in a UI
library

FC Performance First Paint UI Library (cow-components only) First paint event of the browser
FCP Performance First Contentful Paint UI Library (cow-components only) First paint event of the browser

that includes content for the user
(text, images, etc.)

Table 4.1: Metrics used in this study

4.2.1 Source code metrics

The first set of metrics, namely structural complexity, cyclomatic complexity, lines of
code, and maintainability, are metrics that are recommended by Martinez-Ortiz et al. (6)
as described in Section 3.4. We use these metrics to compare the quality of our Web
Components to other Web Components. We follow almost all recommendations by the
paper, including collecting the structural complexity up to a depth of two. Note that we
do things slightly differently from the paper. We also keep track of the lines of code metric,
which the authors do not. We do not use the lines of code metric to compare the quality
of Web Components, but instead we use it to get a rough overview of the complexity of
various UI libraries. Note that we are also not using all metrics recommended by the
authors. The metrics we are not using are the metrics completeness (i.e. how complete
the information displayed to the user is) and consistency (i.e. how long it takes for data
to update across different replicas). We are not using completeness because it does not
apply at the level at which the CC UI library operates. All of our components are 100%
complete, as well as the components of the UI libraries we compare the CC UI library to.
As such, it does not make for a very interesting metric. This metric is very effective when

19

4.2 Metric definitions

more complex components such as entire pages are concerned, but that is not the case
here. We also do not use the consistency metric. The reason for this is relatively simple,
namely that we do not have any components with the ability to update across different
replicas. The same goes for the UI libraries with which we compare the CC UI library.

4.2.2 Size

The size metric aims to measure the theoretical impact of loading the UI library over
the network. We measure this at UI library level granularity since the contributions of
individual components are very hard to measure. This should serve as a good indication
of the relative network loading time of UI libraries without introducing the variable of
network speed. In order to differentiate between a relatively large library and a library
that has many components, we also keep track of the number of components metric.

4.2.3 Load Time

The load time metric aims to provide a measure of the real impact of a UI library on the
page by measuring the real-world load time. The load time we measure is the load time of
the main JS bundle. This contains the code needed to register the components to the page,
as well as the code that performs the rendering. Note that we only measure the parsing
time and running time of the JavaScript bundle. We explicitly exclude the download time
from this metric since this is already captured in SI. A more in-depth definition of how
this metric is captured is laid out in section 5.7.

4.2.4 First Paint & First Contentful Paint

The first paint metric, along with the first contentful paint metric, are only collected for
the CC UI libraries. These metrics give us an indication of the real-world load time of
a page containing the CC UI library and the original components. We use these metrics
to evaluate how the paint time of the UI libraries has changed after its migration to Web
Components and its later migration to JS framework wrappers. While these metrics do
not serve as a perfect way to measure the perceived load time of a page, as discussed in
Section 3.5, they should serve as an excellent comparison between the various distributions
of the CC UI library. Since each of them contains the exact same content and is derived
from the exact same source code, imperfections in these metrics are applied to all test
subjects equally.

20

4.3 Metric targets

4.2.5 Render Time

Finally, the render time metric aims to capture the duration of the render cycle. We
will define this render time as the time between setting the component’s visibility to true
and the browser completing the rendering process. If the render time of components in
the CC UI library is significantly higher than components in other UI libraries or the
Angular components they originate from, the performance impact of migrating Angular
components to Web Components will be too significant. If it is slightly higher, the same,
or lower, we can conclude that the performance impact is minimal.

In order to obtain an objective measurement of the rendering time that is independent
of user perception, we chose to measure the render time of individual components. Since
the components we use in our comparisons all load in a single stage (they are either not
visible or visible), there is no loading state that could cause ambiguity.

4.3 Metric targets

In order to get a sense of the state of the CC UI library, we need to compare it to other
UI libraries. To do so, we have gathered a list of various UI libraries targeting the most
popular JS frameworks. Four of the most popular frameworks are ReactJS, Angular, Vue,
and Svelte 1. Through this comparison, we can compare the wrapper targeting a specific JS
framework with UI libraries that also target that JS framework, allowing us to observe the
influence of the framework itself on the various metrics. These UI libraries are gathered by
searching for the terms “Design Library”, “UI Library”, “javascript UI Library”, “Svelte
UI library”, “React UI Library”, “Vue UI Library”, “Angular UI Library”, and “Web
Component UI Library” on Google. We then add any UI library to the list that we came
across, either by finding it as a direct result or it being mentioned in a blog post or article.
A list of the UI libraries we found and the number of stars on their GitHub page can be
found in Table 4.2. While this is not a complete list of all UI libraries, we feel like it is an
accurate representation of the most popular UI libraries since it contains all of the biggest
UI libraries, as confirmed by the numerous blog posts listing them in order. In order to get
a reasonably accurate representation of libraries using each JS framework, we select the
three UI libraries with the most GitHub stars per JS framework. The list of included UI
libraries can also be seen in Table 4.2. In addition to comparing the CC UI library against
other UI libraries, we also compare it against the Angular components from which they

1https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/

21

https://2020.stateofjs.com/en-US/technologies/front-end-frameworks/

4.4 Analysis of results

originate. We do this by applying our metrics to the 30MHz dashboard and the relevant
components within it.

Since the components included in the selected UI libraries vary greatly, we can not
make a proper comparison between individual components of the UI library. For example,
a button component can not be immediately compared with a date picker component since
date pickers tend to be more complex. In this scenario, higher rendering times can not be
attributed to the UI library running it but to the component itself. In order to be able to
compare every UI library, we have selected a set of basic components that are available
in every UI library. These are the Button, Input (also known as TextField), and Switch
(also known as Checkbox). Since every UI library we compare against contains all of
these, we can compare the metrics for a single component across all UI libraries. We only
apply the various metrics to these three components in each UI library. We also include
a stripped-down version of the CC UI library in the set of UI libraries of which we gather
metrics. This version only contains the three components mentioned above and allows
for a fair comparison with other UI libraries. The reason for this is further explained in
Section 5.6.

4.4 Analysis of results

In order to compare the collected measurements, we use the median value over a set of
measurements. Compared to the average, the median minimizes the impact of outliers in
a data set. Since the measurements we collect are likely to have outliers in them due to
the nature of time-sensitive measurements, this statistical value is likely to be a better
choice.

22

4.4 Analysis of results

UI Library Github
Stars

JS Framework In-
cluded

Version Website

Svelte Material UI 1.6k Svelte Yes 2.0.0 https://sveltematerialui.com/
Smelte 889 Svelte Yes 1.1.2 https://smeltejs.com/
Svelte-MUI 237 Svelte Yes 0.0.3-7 https://svelte-mui.ibbf.ru/
Svelteit 51 Svelte No - https://docs.svelteit.dev/
Material UI 67.1k ReactJS Yes 5.0.0-

alpha.28
https://material-ui.com/

React Bootstrap 19.2k ReactJS Yes 1.5.2 https://react-bootstrap.github.io/
React Semantic UI 12.2k ReactJS Yes 2.0.3 https://react.semantic-ui.com/
Evergreen 10.6k ReactJS No - https://evergreen.segment.com/
Rebass 7.2k ReactJS No - https://rebassjs.org/
Grommet 7.1k ReactJS No - https://v2.grommet.io/
Baseweb 6.2k ReactJS No - https://baseweb.design/
Ant Design 5.3k ReactJS No - https://ant.design/
Elemental UI 4.3k ReactJS No - http://elemental-ui.com/home
Zendesk Garden 858 ReactJS No - https://garden.zendesk.com/
Shards React 649 ReactJS No - https://designrevision.com/docs/shards-react/getting-

started
Angular Material 21.3k Angular Yes 12.0.0-next.5 https://material.angular.io/
NG-Bootstrap 7.7k Angular Yes 9.1.0 https://ng-bootstrap.github.io/#/home
NGX-Bootstrap 5.3k Angular Yes 7.0.0-rc.0 https://valor-softw2are.com/ngx-bootstrap/#/
NG-Lightning 886 Angular No - https://ng-lightning.github.io/ng-lightning/#/
Alyle 236 Angular No - https://alyle.io/
Blox Material 143 Angular No - https://material.src.zone/
Mosaic 117 Angular No - https://mosaic.ptsecurity.com/button/overview
Element 49.8k Vue Yes 1.0.2-beta.40 https://element-plus.org/#/en-US
Vuetify 30.2k Vue Yes 2.4.9 https://vuetifyjs.com/en/
Quasar 18.3k Vue Yes 1.15.10 https://quasar.dev/
Ant Design Vue 14.1k Vue No - https://2x.antdv.com/docs/vue/introduce
Bootstrap Vue 13.1k Vue No - https://bootstrap-vue.org/
Vue-material 9.3k Vue No - https://vuematerial.io/
Buefy 8.6k Vue No - https://buefy.org/
Vuesax 5k Vue No - https://vuesax.com/
Chakra 1.1 Vue No - https://vue.chakra-ui.com/
Fish UI 867 Vue No - https://myliang.github.io/fish-ui/
Wired Elements 8.5k Web Components Yes 1.0.0 https://wiredjs.com/
Clarity Design 6.2k Web Components Yes 5.1.0 https://clarity.design/
Fast 5.6k Web Components Yes 1.8.0 https://www.fast.design/
Material Web Com-
ponents

2.5k Web Components No - https://github.com/material-components/material-
components-web-components

UI5 887 Web Components No - https://sap.github.io/ui5-webcomponents/
Vaadin 17 Web Components No - https://vaadin.com/
Onsen 8.3k Multi-Framework Yes 2.11.2 https://onsen.io/
Primefaces (Angu-
lar)

1.3k Multi-Framework Yes 11.3.2-
SNAPSHOT

https://www.primefaces.org/primeng/

Primefaces (React) 1.3k Multi-Framework Yes 6.2.2-
SNAPSHOT

https://www.primefaces.org/primereact/

Primefaces (Vue) 1.1k Multi-Framework Yes 3.3.6-
SNAPSHOT

https://www.primefaces.org/primevue/

Syncfusion unknown
(not on
github)

Multi-Framework No
(paid)

1.0.0 https://www.syncfusion.com/

Table 4.2: Collected UI libraries, the number of github stars and whether they were included
in the study

23

https://sveltematerialui.com/
https://smeltejs.com/
https://svelte-mui.ibbf.ru/
https://docs.svelteit.dev/
https://material-ui.com/
https://react-bootstrap.github.io/
https://react.semantic-ui.com/
https://evergreen.segment.com/
https://rebassjs.org/
https://v2.grommet.io/
https://baseweb.design/
https://ant.design/
http://elemental-ui.com/home
https://garden.zendesk.com/
https://designrevision.com/docs/shards-react/getting-started
https://designrevision.com/docs/shards-react/getting-started
https://material.angular.io/
https://ng-bootstrap.github.io/#/home
https://valor-softw2are.com/ngx-bootstrap/#/
https://ng-lightning.github.io/ng-lightning/#/
https://alyle.io/
https://material.src.zone/
https://mosaic.ptsecurity.com/button/overview
https://element-plus.org/#/en-US
https://vuetifyjs.com/en/
https://quasar.dev/
https://2x.antdv.com/docs/vue/introduce
https://bootstrap-vue.org/
https://vuematerial.io/
https://buefy.org/
https://vuesax.com/
https://vue.chakra-ui.com/
https://myliang.github.io/fish-ui/
https://wiredjs.com/
https://clarity.design/
https://www.fast.design/
https://github.com/material-components/material-components-web-components
https://github.com/material-components/material-components-web-components
https://sap.github.io/ui5-webcomponents/
https://vaadin.com/
https://onsen.io/
https://www.primefaces.org/primeng/
https://www.primefaces.org/primereact/
https://www.primefaces.org/primevue/
https://www.syncfusion.com/

5

Experimental Setup

We now describe how each of the metrics is being captured and what parameters are used.

5.1 Gathering components

The SC, CC, LOC, and MA metrics are captured from the source files of components.
In order to gather these source files, we do the following: We set up an automatic script
that gathers the source files of components on a per-library basis. Since most UI libraries
follow the convention of storing each component in a single folder or file in a source folder
(generally called src/ or components/), this process is fairly simple. In order to provide a
fair comparison, we always select the largest source file for components as the entry point.
Some UI libraries use a simple index file that re-exports the actual source file as the entry
point. If this file were to be used as the entry point, it would result in an unrealistic
depiction of the component source. Since the UI libraries in this study always contain
a single big source file, this did not result in any situations where the entry point was
ambiguous.

5.2 Structural Complexity

The structural complexity is gathered by capturing the number of imports in a given
source file recursively up to a depth of two, as recommended in (6). To gather these
imports, we use the typescript1 JS package. This package is able to generate an AST or
abstract syntax tree of the file. An AST is an in-memory representation of source code. It
categorizes the semantic meaning of each expression as a tree, denoting relations between

1https://www.npmjs.com/package/typescript

24

https://www.npmjs.com/package/typescript

5.3 Cyclomatic Complexity, Maintainability, Lines of Code

nodes in the tree. By iterating over this tree, we can find the imports. We then follow
these imports and apply the same process, filtering out any duplicates.

Similar to (6), we only apply this process to the JS source code of a component, not
the HTML source code. In the case of Svelte and Vue components, we separate the file
into its JS code and HTML code and apply the process to the JS code only. Code using
ReactJS is written using either plain JavaScript or JSX. JSX is a superset of JavaScript
that supports the describing of HTML elements in JavaScript. Since the typescript

package has built-in support for JSX, we do not need to separate or modify this code.

5.3 Cyclomatic Complexity, Maintainability, Lines of Code

In order to capture the cyclomatic complexity, maintainability metrics, and lines of code
metrics, we input the file into the ts-complex1 JS package. This package is able to
calculate the cyclomatic complexity, maintainability, and lines of code metrics for a given
source file. Note that the lines of code metric does not capture the raw number of lines
but instead filters out any comments, aiming to capture just the lines with actual code.

5.4 Machine specifications

All experiments are performed on a machine with an AMD Ryzen 5 4600H six-core proces-
sor and 16GB of RAM. This machine is running Linux 5.11.15 using the Arch Linux dis-
tribution 2 with the mitigations=auto kernel parameter. All experiment data is loaded
from an M.2 SSD. Since these experiments are partially timing-specific, the timing-specific
experiments are run sequentially and with minimal background tasks. We achieved a state
of minimal background tasks by closing off all non-essential tasks found in the process man-
ager. This should eliminate the effect of experiments on each other and ensure the CPU
can always dedicate a single core to the running experiment. Since this machine has six
cores, it should easily be able to dedicate one of them to the experiments at all times.
Finally, since all experiments were run in one go, the test environments for all tests are
identical.

1https://www.npmjs.com/package/ts-complex
2https://archlinux.org/

25

https://www.npmjs.com/package/ts-complex
https://archlinux.org/

5.5 Time-sensitive metrics

5.5 Time-sensitive metrics

For all time-sensitive metrics (metrics that measure time), we take a few steps to improve
their accuracy. We first of all artificially slow down the speed of the processor by a factor
of five by using the Emulation.setCPUThrottlingRate command 1 in the browser. We
then divide the measured number by this scale, normalizing the value. Additionally, we
perform every time-sensitive measure thirty times. This allows us to get a good overview of
the spread of the measured values, as well as reducing the effect of variations in hardware
performance and software influences. Finally, we randomize the order in which tests are
run. We do this by creating a queue of all to-be-ran time metrics. Every item in the queue
is a single-time metric test for a single bundle, meaning every metric bundle combination
is in the queue thirty times. This queue is then shuffled, after which the individual items
are executed. While we already made sure to reduce the number of running processes on
the benchmark computer, this should ensure that any temporary differences in available
processing time should be smoothed out.

5.6 Size

In capturing the size metric, we need to pay attention to several influential factors. The
first factor is that the source code of files is split up into multiple files, some of which are
not actually used at runtime. Examples of this include files used during testing and type
definition files. Additionally, it is possible that unreachable code does not make it into the
bundle because it will not be executed. The process by which code that is not going to
be executed is excluded from the resulting bundle is called tree shaking and is discussed
later. The fact that the source code contains unreachable code means that the size of the
source code is not representative of the code that is actually being used. Additionally, the
UI library will have dependencies outside of its source code that also need to be included.
To get around these issues, we use a JavaScript bundler. A bundler is a program that
bundles all of the source code of a given project into a single file, including dependencies
and source files that are being used, and excluding unreachable files or code. We use the
esbuild2 bundler for this process.

Another influential factor in determining the size is the way in which the source code is
written. A file containing many comments is larger than a file containing no comments. An

1https://chromedevtools.github.io/devtools-protocol/tot/Emulation/#method-
setCPUThrottlingRate

2https://esbuild.github.io/

26

https://chromedevtools.github.io/devtools-protocol/tot/Emulation/#method-setCPUThrottlingRate
https://chromedevtools.github.io/devtools-protocol/tot/Emulation/#method-setCPUThrottlingRate
https://esbuild.github.io/

5.6 Size

increased number of comments in a file does not necessarily indicate increased complexity;
if anything, it indicates the opposite. Similarly, longer variable names increase the size as
well. To eliminate this factor, we apply minification to our bundle. Minification strips out
any non-code text from a bundle and reduces the size of the code to the minimum that is
needed.

The final influential factor is the number of components and the type of components.
A UI library with five components will generally be smaller than a UI library with thirty
components. Even when we account for this difference by capturing the number of compo-
nents, the result will still be influenced by the types of components the UI library contains.
For example, if two UI libraries are the same except that one of them contains a complex
chart component, the chart heavily skews the average size of a component. This is the
case even though any given component in the other library is the same size; the chart
library just has different types of components. To get around this issue, we make sure to
construct a bundle containing the same three types of components for every UI library. We
then make use of tree shaking to exclude other components from the bundle. Tree shaking
is the process by which unused code is removed from a JS bundle, effectively reducing its
contents to just code that is reachable. By including the same three types of components
into the bundle for every UI library, we can create bundles containing the same functional-
ity and nothing more. This eliminates the influence of bigger or smaller components that
are also available in the UI library since they are excluded from the bundle entirely.

The tree-shaking process is applicable to the UI libraries against which we are comparing
the CC UI library. However, it is not applicable to the CC UI library itself. This is the
case because every component is registered as a Web Component simply by loading the
library, which means that every component is used. Tree shaking is then unable to remove
any components from the bundle, leading to a relatively larger bundle. This would lead
to the CC UI library having a much larger size than other UI libraries. To provide a fair
comparison, we add a stripped-down version of the CC UI library to the set of UI libraries
against which we are comparing. This stripped-down version only contains the three basic
components, and as such, allows for fairer size comparison against other UI libraries.

After these factors are taken care of, the process of capturing the size metric is as easy
as getting the file size of the resulting bundle.

27

5.7 Load Time

5.7 Load Time

For the load time metric, we capture the parse- and runtime of the JS bundle described
in Section 5.6. We explicitly exclude the network load time of the bundle. In order to
collect this metric, we use the puppeteer1 JS package. This package allows the running
of and programmatic control over a headless instance of the Google Chrome browser 2 (a
headless browser is a browser without a graphical user interface). We set up an empty
webpage containing just the JS bundle whose load time we wish to measure. We then
enable the Chrome profiler 3 for the page. The Chrome profiler is a profiler built into
the Google Chrome browser that allows for the measuring of various metrics during page
execution. For example, it is able to measure the run time of JavaScript code and various
browser-specific tasks such as painting, compositing, and rendering. We now load the
page, stop the profiler and collect the results. We then look for the EvaluateScript

event in the resulting trace events. This contains the time taken evaluating the given
bundle. An example of such a trace can be seen in Figure 5.1.

Figure 5.1: An example of a Chrome profiler trace performed during a bundle load. The
orange bar labeled “Evaluate Script” indicates the total load time and spans 308.54ms.

5.8 Render Time

We capture the render time metric by using the puppeteer package as well. We prepare a JS
bundle containing the three basic components and an exposed function that allows them to

1https://github.com/puppeteer/puppeteer
2https://www.google.com/intl/en_us/chrome/
3https://developer.chrome.com/docs/devtools/evaluate-performance/

28

https://github.com/puppeteer/puppeteer
https://www.google.com/intl/en_us/chrome/
https://developer.chrome.com/docs/devtools/evaluate-performance/

5.8 Render Time

be rendered on-demand. This function is JS framework-specific since every JS framework
has a different method of conditional rendering. The rendering methods for the various
frameworks can be seen in Listings 2,3, 4, 5, 6. We then load the page in a puppeteer
browser, enable the profiler, and call the function that renders a given component. We
wait for a few seconds, after which we assume the component to be fully rendered. If our
assumption turns out to be wrong and the component is not done rendering at time of
looking for the end event, we will be unable to find the end event, and metric collecting will
fail. We then increase this timeout and try it again. We then iterate through the captured
performance trace and look for the time difference between two events. The first event
is the calling of the function mentioned above. The second event is the last composite
event that has a paint event before it. We repeat this process three times per component
(on top of the thirty mentioned in Section 5.5 for a total of ninety measurements), thirty
measurements with a single instance of the component, thirty measurements with 10
instances, and thirty measurements with 100 instances. This allows us to measure a more
realistic scenario where multiple components are rendered at once, as well as eliminating
any performance impacts on just the very first component.

We chose the last composite event that has a paint event before it for the following
reason. The chrome browser updates the view through a pipeline process. The complete
pipeline can be seen in Figure 5.2. This process always starts with a JS, CSS, or HTML
change. Then it performs a different set of pipeline events depending on what changed.

Figure 5.2: The render pipeline in chrome.

Source: https://developers.google.com/web/fundamentals/performance/rendering

• Layout: If a layout property such as the element’s dimensions changes, the entire
pipeline is run.

• Paint: If a paint-only property such as a color changes, all but the layout stages run.

• Animation: If a property that neither layout nor paint changes, only the JavaScript,
style, and composite stages run. This pipeline is generally run when an animation
is active.

29

https://developers.google.com/web/fundamentals/performance/rendering

5.9 First Paint & First Contentful Paint

In capturing the render time, we want to capture the time until a component reaches
its final state. We need to define this final state for all components. While this state is
fairly simple to define and is static for most components, it can also be a dynamic final
state. For example, a loading spinner or a component that contains a canvas will at some
reach its final state but will still be visually changing. The time between the component
not being visible and it reaching its final state are spent in the Layout and Paint stages,
while the time after it is spent in the Animation stage. Since we want to capture only
the time until the final state, we only care about the Layout and Paint stages. The only
difference between these two stages and the Animation stage is that the Animation stage
ends with a composite event without a paint event before it, and the other two do not. We
use this to our advantage by looking for the last composite event that has a paint event
before it. We can not just take the last paint event since the composite event is still part
of the pipeline and is technically part of the render stage. When we take the time between
the calling of the function that starts the rendering and this event, we are able to capture
the time a component takes to render perfectly. A visual representation of this rendering
process can be seen in Figure 5.3 and Figure 5.4.

Figure 5.3: An example of a Chrome profiler trace performed during the render of a compo-
nent. The bar labeled “window.setVisibleComponent” indicates our start time. The end time
falls within the red circle, a zoomed in version of which can be seen in Figure 5.4.

5.9 First Paint & First Contentful Paint

In order to measure the first paint and first contentful paint, we construct a page that
has the same content across all versions of the CC UI library. This means we construct
one for the original Angular components, the Web Components version, and the var-
ious JS framework wrappers. We measure this metric by using the browser’s built-in

30

5.10 Number of Components

Figure 5.4: An example of a Chrome profiler trace performed during the render of a compo-
nent. The bar labeled “composite layers” signals our end time. Note that this falls just after
a bar labeled “paint”, signaling the paint event before the last composite event.

performance object. This object keeps track of both the FP and FCP metrics, allowing
us to extract them.

5.10 Number of Components

The number of components is captured separately for the UI library as a whole and for
the bundle described in Section 5.6. Since the bundles described in Section 5.6 always
contain three components, this number will always be three. The only exception is the
CC UI library. For the CC UI library and the UI libraries captured as a whole, we gather
the number of components by applying the process described in Section 5.1 to gather
components, after which we count the number of them.

31

6

Case Study

In this chapter, we lay out the steps taken and the issues faced during the conversion
from Angular components to Web Components. This chapter consists of five sections.
The first section provides some information on the build process we are using. The second
section describes issues faced that were not specific to Angular or Angular Elements, while
the third section contains just Angular-specific issues. The fourth section lists the various
optimizations we applied, and the fifth section describes the JS framework wrappers. Note
that because of the split between Angular and Web Components issues, the issues are no
longer listed out in chronological order. For a chronological overview of the various issues
and their relative complexities, see Table 6.1. After the issue sections, we discuss the
various JS framework wrappers and how they were created. Lastly, we list optimizations
performed along with their effectiveness.

6.1 Build Process

The build process that eventually generates the Web Component library consists of a
number of stages. These are the following stages:

• Pre-build scripts: Code runs that manipulates the source code and prepares it for
the next process. An example of this is the pre-build script that copies the source
code to a build/ folder. This step allows us to transform the source code that is
going to be used in the next stage without touching the original files. If we were to
change the original files in place, we would also have to undo the replacements. This
could prove problematic if a build fails, after which source control is the only way
to recover the files.

32

6.1 Build Process

Section Section Name Relative Complexity

6.2.1 Global CSS simple
6.2.2 Compatibility simple
6.2.3 Tagname renaming simple
6.2.4 Theming simple
6.2.5 Non-string Attributes medium
6.2.6 Complex Attributes complex
6.3.1 ng-deep simple
6.3.2 createCustomElement simple
6.3.3 EventEmitters simple
6.3.4 Hierarchical Injectors hard
6.3.5 ngOnInit medium
6.3.6 Casing in attribute names simple
6.3.7 Angular directives simple
6.3.8 <ng-content> simple
6.3.9 Angular Attribute Order medium
6.3.10 Bundling Angular Imports hard
6.3.11 Angular Ivy hard
6.4.1 Reduce time searching for CSS simple
6.4.2 Move CSS searching to initial load simple

Table 6.1: Sections in chronological order along with their relative complexities

33

6.2 Web Component Issues

• Building: We build the Angular project. In this step, the code in the previously
created build/ directory is built into an Angular bundle. When this bundle is
loaded on a page, the Web Component library is initialized, and the various Web
Components are ready for use.

• Bundling: Build artifacts generated in the previous step are spread out over several
files. Since we want to provide developers with a single bundle that contains all of
the required code, we bundle these various files up into a single file.

• Generating of wrappers: The various wrappers for JS frameworks are generated.
This process is described further in Section 6.5.

6.2 Web Component Issues

In this section, we document issues faced that were related to Web Components, as well
as our solutions to them. These are issues that are not at all related to the Angular
framework and are likely to be faced in other similar projects.

6.2.1 WC1: Global CSS

Problem: Angular components have a property called encapsulation 1. This property
determines how CSS styles are applied to the component. It has three possible values:

• ShadowDom: Global styles are not applied to the component. Only the component’s
own styles are applied to it.

• Emulated (default): Global styles are applied to the component as well as its own
styles. Other components’ styles are not applied to it.

• None: Global styles, a component’s own styles, and other components’ styles are
applied to this component.

In the 30MHz codebase, the default (or Emulated) value is used, meaning that both
global and component-specific styles are applied to it. This is done by putting both of
them in a global stylesheet. This stylesheet then has component-specific selectors added
to it, making sure that styles are always scoped to a specific component. An example of
this process can be seen in Listing 6.1 and Listing 6.2.

1https://angular.io/guide/view-encapsulation#view-encapsulation

34

https://angular.io/guide/view-encapsulation#view-encapsulation

6.2 Web Component Issues

When migrating the Angular components to Web Components, we ensure the compo-
nents’ contents are rendered within a ShadowRoot 1. A ShadowRoot is a separate root
within an HTML document that contains its very own document. This document is en-
tirely separated from the parent document, meaning it is not influenced by global styles
in that document. This effectively separates the component from the rest of the DOM,
thereby also removing the ability of the global 30MHz stylesheet to be applied to it.

Solution: When a component is rendered, we find the global stylesheet on the page.
We then copy it into a Constructable Stylesheet 2 if it has not already been copied. Con-
structable Stylesheets are a method of creating CSS stylesheets in JavaScript. These
stylesheets can then be used together with the adoptedStylesheets 3 JavaScript prop-
erty of a ShadowRoot. Any Constructable Stylesheet placed in the adoptedStylesheets

array is applied to the ShadowRoot similar to how any <style> tag in a document is
applied to that document. The advantage to using this method is that Constructable
Stylesheets are simply references that can be re-used by the browser, contrary to regular
<style> or <link rel="stylesheet"> tags, which are parsed from scratch every time
the browser encounters them. This means that every time a new instance of a compo-
nent is created, instead of copying a <style> or <link rel="stylesheet"> tag and
having the browser parse it from scratch (which takes approximately 16ms), we instead
add the stylesheet to the adoptedStylesheets property of the ShadowRoot and have
an already-parsed stylesheet applied to the ShadowRoot. We use this method to apply
the global 30MHz stylesheet in the component’s own ShadowRoot as well by copying that
stylesheet to every component’s ShadowRoot. Normally this would incur a heavy perfor-
mance impact, but because of the use of adoptedStylesheets , the performance impact
is minimal.

1 // my-component.html
2 <my-component ></my-component >
3
4 // my-component.css
5 :host {
6 color: red;

1https://developer.mozilla.org/en-US/docs/Web/API/ShadowRoot
2https://developers.google.com/web/updates/2019/02/constructable-stylesheets
3https://developers.google.com/web/updates/2019/02/constructable-stylesheets#using_

constructed_stylesheets

35

https://developer.mozilla.org/en-US/docs/Web/API/ShadowRoot
https://developers.google.com/web/updates/2019/02/constructable-stylesheets
https://developers.google.com/web/updates/2019/02/constructable-stylesheets#using_constructed_stylesheets
https://developers.google.com/web/updates/2019/02/constructable-stylesheets#using_constructed_stylesheets

6.2 Web Component Issues

7 }

Listing 6.1: An example of uncompiled source code for a component

1 // my-component.html
2 <my-component _ngcontent -uix-c290></my-component >
3
4 // my-component.css
5 [_ngcontent -uix-c290] {
6 color: red;
7 }

Listing 6.2: An example of compiled code for the component in Listing 6.1.

6.2.2 WC2: Compatibility

Problem: While browser support for Web Components is relatively widespread as of
this case study 1, it is not yet universal. Additionally, Safari has chosen not to imple-
ment support for Customized Built-In Elements2. This feature allows for extending built-
in HTML elements, allowing developers to extend already-existing elements such as the
HTMLInputElement and others. Since the 30MHz dashboard makes use of components
that extend native elements (in the form of directives3), we need this feature to make the
CC UI library work.
Solution: We add polyfills to the final JS bundle. These are files that add support for
unsupported features by implementing them in JavaScript. If the feature a polyfill intends
to provide is already supported by the browser, it will fall back to the built-in version.
This ensures that they pose little to no performance impact if a given feature is already
supported. In particular we use the custom-elements4 and custom-elements-builtin5

polyfills. These add support for Web Components (aka Custom Elements) to browsers
that do not have it. Additionally, they add support for the previously mentioned Cus-
tomized Built-In Elements feature.

1https://caniuse.com/?search=components
2https://www.chromestatus.com/feature/4670146924773376
3https://angular.io/guide/attribute-directives
4https://www.npmjs.com/package/@ungap/custom-elements
5https://www.npmjs.com/package/@ungap/custom-elements-builtin

36

https://caniuse.com/?search=components
https://www.chromestatus.com/feature/4670146924773376
https://angular.io/guide/attribute-directives
https://www.npmjs.com/package/@ungap/custom-elements
https://www.npmjs.com/package/@ungap/custom-elements-builtin

6.2 Web Component Issues

6.2.3 WC3: Tagname renaming

Problem: As per the Web Components specification, all Web Components are required
to have a hyphen in their tag name 1. Angular components, on the other hand, do not
have this requirement. Because of this, there are some components in the 30MHz codebase
without a hyphen in their name. In order to export them as Web Components, we need
to come up with a tag name with a hyphen in it. In this case we decided to prefix every
component with cow- (for example <cow-checkbox>). This renaming, however, leads
to an issue with components that are being used inside other components. For example
say the TripleCheckbox component renders three checkboxes. Example source code for
such a component can be seen in Listing 6.3. If such a component is rendered as a Web
Component, it will attempt to render the <checkbox> HTML tag, not knowing that it
has been renamed to <cow-checkbox> . The result is an empty component.
Solution: We run a pre-build script that replaces the names of components that will
be used in the UI library with their prefixed variant. This pre-build script is run in the
first stage of our build process, as described in Section 6.1. We make sure not to replace
native HTML elements by matching the found HTML tags against a list of known native
HTML elements.

1 <checkbox id="checkbox -1"></checkbox>
2 <checkbox id="checkbox -2"></checkbox>
3 <checkbox id="checkbox -3"></checkbox>

Listing 6.3: Example source code for a TripleCheckbox component.

6.2.4 WC4: Theming

Problem: 3rd party developers have expressed the wish to apply custom theming to
their apps. In order to make this possible, we need to find a way to apply a single theme
across all components on the page, regardless of ShadowRoots.
Solution: We make use of CSS Custom Properties2. These are effectively CSS variables
that are defined for the whole document, including ShadowRoots. An example of the
application of CSS Custom Properties can be seen in Listing 6.4. By changing the styles
of the underlying Angular components to use CSS Custom Properties when available, we

1https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-core-
concepts

2https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties

37

https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-core-concepts
https://html.spec.whatwg.org/multipage/custom-elements.html#custom-elements-core-concepts
https://developer.mozilla.org/en-US/docs/Web/CSS/Using_CSS_custom_properties

6.2 Web Component Issues

are able to provide theming. An example of this can be seen in Listing 6.5.

1 function setPrimaryColorTheme(color: string) {
2 document.documentElement.style.setProperty('color-primary', color);
3 }
4
5 setPrimaryColorTheme('red');

Listing 6.4: Applying CSS Custom Properties to the document

1 my-component {
2 /**
3 * Tries to use the --color-primary variable if available ,
4 * falls back to blue when it is not defined.
5 */
6 background-color: var(--color-primary , blue);
7 }

Listing 6.5: An example of a component making use of CSS Custom Properties

6.2.5 WC5: Non-string Attributes

Problem: As mentioned previously, it is not possible to pass non-string attributes to
Web Components using just HTML. This presents an issue since some Angular compo-
nents expect a non-string attribute to be passed. Examples include but are not limited
to a boolean, a number, a JavaScript object with an alignment property, and a Date

instance. While this is a problem that will be solved by our JS framework wrappers and
particularly in Section 6.2.6, the CC UI library should be at least usable by itself as well.
Solution: In this scenario, there is no access to JavaScript. This results in us being
unable to make use of any solutions to this problem that utilize the setting of attributes or
properties through JavaScript. The solution we came up with was to allow developers to
optionally pass JSON to components by prefixing the attributes with json- . When this
is done, the attribute value is parsed through JSON.parse , after which the corresponding
property is set on the Web Component. This gives developers a way to pass most of the
previously presented before. To allow developers to pass Date instances, we make it
possible to pass strings, which we parse into Dates. While this is not a great workaround
to have, especially since it only takes care of the Date class and not, for example, the
RegExp class. The only way to fix this issue for all classes is to provide a method similar
to Python pickle 1, which, as mentioned on the pickle documentation page, is not

1https://docs.python.org/3/library/pickle.html

38

https://docs.python.org/3/library/pickle.html

6.2 Web Component Issues

secure. We also feel like this problem is not prevalent enough in our case to warrant such
a solution.

6.2.6 WC6: Complex Attributes

Problem: Continuing with the same problem, we now need to develop a way to solve the
problem for even more situations, this time being able to use JavaScript since the solution
will be implemented into the JS framework wrappers. Some of which include the passing
of an object reference or an HTML element reference. This will never be possible through
JSON since the reference needs to be preserved. Instead, we make use of JavaScript this
time. Our goal is to allow a parent component written in the language of the JS framework
to be able to pass its properties down to its child. This parent component is essentially
just a passthrough component whose set of properties is identical. Its only purpose is
to pass on these components and to provide a component native to the JS framework.
Another thing to keep in mind is that we need all properties to be defined before the
child component performs its first render. This issue is present simply because of the way
the original Angular components are written, which assumes that they will only receive
attributes once and that they will never change.
Approaches: There are a few approaches to solving this issue. These can be grouped
into three categories, an visual representation of which can be seen in Figure 6.1. These
categories are the following:

Figure 6.1: Categories into which approaches to passing complex attributes can be grouped

39

6.2 Web Component Issues

• Parent → child (marked A in Figure 6.1): The parent node gets a reference to the
child during the rendering process. Then the parent sets the properties on the child.

• Child → parent (marked B in Figure 6.1): The child gets a reference to the parent
during the rendering process. It then requests its properties from the parent.

• Parent → intermediary → child, Child → intermediary → parent (marked C in
Figure 6.1): An intermediary takes the properties from the parent. The parent then
provides the child with some way to find the intermediary, after which the child can
get the properties from the intermediary upon rendering.

The first approach would be the easiest, but this approach is not always feasible. Many
JS frameworks do not provide such low-level access to the to-be-rendered component.
Instead, they often provide callbacks with a reference to the element after it has been
connected to the DOM. Since the properties of our components need to be defined before
they have even been rendered, this approach does not work for us.

The second approach presents similar problems. While in some JS frameworks, it is
possible to get a reference to the parent component, JS frameworks that use a virtual
DOM such as ReactJS and Vue 1 do not have a real parent component instance. Instead,
the parent is just an abstract concept.

This leaves us with the last approach—the creation of an intermediary object which holds
the properties. The child is then given some way to get a reference to the intermediary
(bypassing the problem of the second approach), after which it can get the to-be-applied
properties from the intermediary. As long as we make sure the child has a way to find
the intermediary access before it has been rendered to the DOM, we are able to fulfill the
requirement of defining all properties before the first render.
Implementation: Our implementation consists of several steps. We start by creating
a class which we will call Intermediary. This class has an instance manager attached to
it, which we will call the IntermediaryManager. Our JS framework wrapper code will be
wrapping around the basic CC UI library. Since the CC UI library does not export the
IntermediaryManager, we are unable to get a reference to it from our wrapper (aka the par-
ent). In order to still get a reference to it, we want to store it globally. Because storing such
properties on the window object can result in collisions and is unreliable, we will be storing
it as a property of the defined Web Components. This means that we are able to access the
IntermediaryManager property on the customElements.get('cow-checkbox') object

1https://vuejs.org/

40

https://vuejs.org/

6.3 Angular Issues

and get a reference to the IntermediaryManager from both the parent side and the child
side.

Now that we have taken care of this issue, we are able to start using it. We make the
parent create an instance of an Intermediary. This Intermediary gets a simple string ID.
We are then able to look up the ID in the IntermediaryManager and get the corresponding
Intermediary. This ID is passed to the child, allowing it to look up this Intermediary.

For passing the actual values, we make use of references. For each of the parent’s prop-
erties, we pass the value to the Intermediary. The Intermediary then generates a unique
string representing that value. If the Intermediary already knows the value, the same
string is returned. Internally it maps this string to the value. We then pass this string
to the child instead of passing the original complex value (which would not work). The
child then receives the value and resolves it back to a complex value by consulting the
Intermediary. Through this process, the child component is able to receive complex values
from its parent through simple HTML string attributes.

6.3 Angular Issues

In this section, we describe any Angular related issues we faced. These are issues that
were specific to Angular and are unlikely to be faced in similar projects when a different
JS framework is being targeted.

6.3.1 A1: ng-deep

Problem: Angular provides the ng-deep CSS selectors 1. Where regular CSS selectors
stop at the ShadowDom boundary, meaning that a component will never be able to have
a selector apply to the DOM of another component, the ng-deep selector does allow for
this. This selector is deprecated but still in use in the 30MHz codebase. It is a CSS selec-
tor that is implemented in JavaScript by Angular that does not work outside of Angular
environments (including the Web Components environment). As such, we need to remove
it.
Solution: The fix for this issue was fairly simple. Any instance of ng-deep had to be
removed. While there has been some talk around browser support for a similar deep se-
lector 2, with both ::shadow and /deep/ making it into Chrome, they have since both

1https://angular.io/guide/component-styles#deprecated-deep--and-ng-deep
2https://drafts.csswg.org/css-scoping/

41

https://angular.io/guide/component-styles#deprecated-deep--and-ng-deep
https://drafts.csswg.org/css-scoping/

6.3 Angular Issues

been removed 1. As such, we had to come up with a workaround. Since the only way to
effectively communicate from a component to child components is properties, we changed
the code to use properties instead. An example of this change can be seen in Listing 6.6
and Listing 6.7.

1 // parent-component.html
2 <child-component ></child-component >
3
4 // parent-component.css
5 ::ng-deep div {
6 color: red;
7 }
8
9 // child-component.ts

10 @Component({
11 ...
12 })
13 class ChildComponent {
14 ...
15 }

Listing 6.6: A component before the ng-deep change

1 // parent-component.html
2 <child-component red></child-component >
3
4 // child-component.ts
5 @Component({
6 ...
7 })
8 class ChildComponent {
9 @Input() red: boolean;

10
11 constructor(private _elementRef: ElementRef) {
12 if (this.red) {
13 _elementRef.nativeElement.classList.add('red');
14 }
15 }
16 }
17
18 // child-component.css
19 :host[red] {
20 color: red;

1https://developers.google.com/web/updates/2017/10/remove-shadow-piercing

42

https://developers.google.com/web/updates/2017/10/remove-shadow-piercing

6.3 Angular Issues

21 }

Listing 6.7: A component after the ng-deep change

6.3.2 A2: createCustomElement

Problem: The main export of the Angular Elements library is the createCustomElement

function 1. This function takes an Angular component and turns it into a Web Component.
It does this by extending an HTMLElement base class and applying all Angular compo-
nent features on top of it. However, this function does not offer the ability to change the
base class from an HTMLElement into anything else. As mentioned before, the 30MHz
dashboard makes use of some elements that extend native elements. For example, the
30MHz input field extends the default HTML input field and only adds styling, preserving
any built-in accessibility features provided by the browser. When migrating this Angular
component to a Web Component, we also wish to preserve these same features. This can
be done by extending built-in HTML elements 2. The createCustomElement function
does not provide this option, causing us to be unable to create such an element. There is
an open feature request for this option at the time of writing of this paper 3.
Solution: We have no choice but to implement this option ourselves. This means we
have to copy the entire source code of the createCustomElement function, along with
many of its dependencies, since very few of them are exported. After this, we change the
function to allow us to pass such an option. It should be noted that this does introduce
additional difficulties with upgrading Angular Elements. Instead of upgrading the package
itself, the copied source code will have to be replaced with the new source code. On the
other hand, the referenced issue might be fixed, after which the process of copying source
code is no longer necessary.

6.3.3 A3: EventEmitters

Problem: Angular implements EventEmitters 4. These are classes that are able to
emit events, as well as being able to be listened to. When the emit function is called,
the passed value is sent directly to those functions that added an event listener to it. Note
that this behavior is different from regular event emitters, which emit a CustomEvent ,

1https://angular.io/api/elements/createCustomElement
2https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_custom_elements
3https://github.com/angular/angular/issues/19108
4https://angular.io/api/core/EventEmitter

43

https://angular.io/api/elements/createCustomElement
https://developer.mozilla.org/en-US/docs/Web/Web_Components/Using_custom_elements
https://github.com/angular/angular/issues/19108
https://angular.io/api/core/EventEmitter

6.3 Angular Issues

which contains the actual value in the detail property. A lot of our Angular code relies
on the value being directly emitted and it not being wrapped in a CustomEvent.

When a component is migrated to a Web Component, however, this emitted value is
wrapped in a CustomEvent. Since the Angular code relies on this value being directly
emitted, errors occur. In order to get around this issue, we need to make sure that inter-
nal code that listens to such EventEmitters receives the value itself, while external code
(such as a 3rd party listening to a Web Component) receives the value wrapped in a Cus-
tomEvent.
Solution: We run a script that iterates over the source files, looking for any location
where an event listener is being added to such an EventEmitter. Once we find one, we
wrap the callback in an unwrapping function that strips away the CustomEvent and re-
turns just the code value. An example of this change can be seen in Listing 6.8.

1 // before
2 (valueChanged)="myHandler($event)"
3
4 // after
5 (valueChanged)="myHandler(unwrapEvent($event))"

Listing 6.8: A change made to an event listener. The definition of unwrapEvent can be
seen in Listing 6.9

1 function unwrapEvent(event) {
2 if (event instanceof CustomEvent) {
3 return event.detail;
4 }
5 return event;
6 }

Listing 6.9: The unwrapEvent function

6.3.4 A4: Hierarchical Injectors

Problem: Angular makes use of a feature called Dependency Injection 1. This allows a
parent module to provide its children with an instance of a particular dependency class.
This class instance is shared among the module and its children. Generally, only modules
provide their children with dependencies, where modules are simply collections of compo-
nents that serve some common purpose. This dependency injection feature can also be
leveraged to have a given component provide its own instance of a class only to its direct

1https://angular.io/guide/dependency-injection

44

https://angular.io/guide/dependency-injection

6.3 Angular Issues

children. This means that every instance of that component gets its own separate instance
of the dependency, which it then shares with its children, and not one that is shared across
all components in the module. This is called Hierarchical Dependency Injection1 and it is
a feature that is utilized by 30MHz in some areas.

Angular Elements does not support this feature intentionally 2. Instead, it only supports
the use case where modules provide their components with dependencies. The reason for
this is that every component migrated with Angular Elements is mounted to the DOM as
its own root. It does not have a concept of a parent component and is unable to look up
the injector of its parent. While the pattern of Hierarchical Dependency Injection is not
recommended for use with Angular Elements 3, it is still a pattern used by 30MHz, and
as such, we need to support it in order for the CC UI library to work.
Solution: Our goal in fixing this problem is to have a component injector inherit from
its parent injector, which will facilitate Hierarchical Dependency Injection. To do this, we
need to find the parent when the child is being rendered. After this, we can extract its
injector, craft a new injector that combines the child and parent injector, and finally supply
this new injector to the child. An example of this process can be found on StackBlitz 4.

We first need to find the parent. This process is relatively straightforward. When the
child is being rendered, we travel up the DOM tree until we find a node with specific
properties that only Angular elements have. We then move on to the next stage of finding
its injector.

While the finding of a node’s injector is straightforward in development mode since
Angular exposes a window.ng.getInjector function, this process is a lot more com-
plicated in production mode. To find it, we first need to find the component’s hidden
Angular properties. These can be found under the component’s __ngContext__ prop-
erty. Depending on the environment, this can either be an object containing the tNode

and lView properties or an array that contains them at a magic offset. The tNode

and lView are internal representations of a bunch of Angular-specific properties for the
component.

We are unable to access the original injector of the parent component since it is hidden
in Angular-internal code. Instead, we need to use the tNode and lView to craft a
new injector that will do the same thing as the original injector. However, in order to

1https://angular.io/guide/hierarchical-dependency-injection
2https://github.com/angular/angular/issues/24824#issuecomment-404399564
3https://github.com/angular/angular/issues/24824#issuecomment-404399564
4https://stackblitz.com/edit/ngelements-issue-40104?file=src%2Fapp%2Fbar%2Fbar.

component.ts

45

https://angular.io/guide/hierarchical-dependency-injection
https://github.com/angular/angular/issues/24824#issuecomment-404399564
https://github.com/angular/angular/issues/24824#issuecomment-404399564
https://stackblitz.com/edit/ngelements-issue-40104?file=src%2Fapp%2Fbar%2Fbar.component.ts
https://stackblitz.com/edit/ngelements-issue-40104?file=src%2Fapp%2Fbar%2Fbar.component.ts

6.3 Angular Issues

craft this new injector class instance, we need a reference to that same class. While a
Injector class is exported from the Angular package, this is not actually the injector
we want. Angular actually has two types of injectors, one of which is the previously
mentioned Injector and the other is the NodeInjector . This NodeInjector is only
used internally, and it is the injector we want. To get a reference to it, we access the
injector property of a fake component created by a ComponentFactory . Since the
ComponentFactory is also not exported, we need to get a reference to it through the
global injector. We now finally have a reference to the NodeInjector class, which allows
us to re-create the parent’s injector.

We now merge this injector with the child injector. This is a relatively simple process.
When a request for an injected value comes in, we first look for it in the child. If the child
does not have it, we look at the parent injector.

We now need to make sure Angular actually uses this injector we just created. To do
so, we need to override the component’s default element strategy (NgElementStrategy).
This element strategy is a class provided by Angular that manages the connection between
the DOM and the underlying Angular component. Since the NgElementStrategy class
is also not exported by Angular, we need to find a reference to it somewhere. To do so, we
create a fake component and read its ngElementStrategy property. We can now extend
the class, replace the injector and provide it to the component. A complete code example
of this process can be found in Listing 1.

While we attempted to maintain compatibility with the Angular source code by not
copying code but by instead getting references to them at runtime, Angular updates
might cause the current solution to this problem to break. While the underlying idea for
the solution is unlikely to be rendered impossible, the methods we use to achieve it might
change, and the code might have to be partially re-written.

6.3.5 A5: ngOnInit

Problem: Angular Elements does intentionally not guarantee the order in which at-
tributes are set on an element (even initial attributes) 1. This means that attributes can
be set on an element both before or after its main init hook (ngOnInit) is called. An ex-
ample of this process can be seen in Listing 6.10. While this is not a problem if attributes
are only used to handle visual state, they can cause significant problems when used for

1https://github.com/angular/angular/issues/29050

46

https://github.com/angular/angular/issues/29050

6.3 Angular Issues

component configuration. For example, if a component performs a fetch request to the
server and takes a URL property that determines the target URL, it is essential that this
property be set before the main hook runs. Quite a few components in the 30MHz code-
base have a similar setup. As such, we need to guarantee that a component will always
have the complete set of initial properties set before its main hook is called.
Solution: We know that, while the order of attribute setting is not guaranteed, we
are guaranteed the fact that they will run sequentially. Since JavaScript is a single-
threaded language and all attribute setting calls are synchronous, we know that all at-
tributes will be set once the main thread is free again. For this, we use the global
window.requestAnimationFrame JavaScript function. This function takes a callback
and calls it when the main JavaScript thread is free to take on new work. We now
firstly replace the component’s ngOnInit function with an empty function, ensuring
that when Angular calls it, the component’s main hook is not actually run. We then
call window.requestAnimationFrame and pass it the original ngOnInit function. Now
we can guarantee that the ngOnInit function is called after all attributes have been set.

1 // HTML source file
2 <my-element foo="bar" bar="baz" />
3
4 // can be transformed into any of the following:
5 // 1
6 const element = document.createElement('my-element');
7 element.setAttribute('foo', 'bar');
8 element.setAttribute('bar', 'baz');
9 parent.appendChild(element);

10
11 // 2
12 const element = document.createElement('my-element');
13 parent.appendChild(element);
14 element.setAttribute('foo', 'bar');
15 element.setAttribute('bar', 'baz');
16
17 // 3
18 const element = document.createElement('my-element');
19 element.setAttribute('foo', 'bar');
20 parent.appendChild(element);
21 element.setAttribute('bar', 'baz');

Listing 6.10: HTML source code and its Angular Elements equivalent

47

6.3 Angular Issues

6.3.6 A6: Casing in attribute names

Problem: In the process of migrating Angular components to Web Components, An-
gular Elements maps all input properties from camelCase casing to kebab-case. For ex-
ample the input property myInputProperty is set through the my-input-property

HTML attribute. The reason for this change is that HTML attributes are case-insensitive.
To HTML myInputProperty is identical to myinputproperty and MYINPUTPROPERTY .
This mapping of input properties presents some issues to us. Internal Angular elements
still use the camelCase variant to set properties on their child components. Since the Web
Component variants do not recognize the camelCase variant of the property anymore, they
are ignored.
Solution: We solve this issue by making sure the Web Components also accept the
camelCase variant. As HTML is case insensitive, there is no point in checking the cas-
ing of the passed attribute. Instead, we convert it to lowercase and compare it against
the lowercase version of the original camelCase input property. In the previous example
myInputProperty , myinputproperty , MYINPUTPROPERTY , and my-input-property

would all refer to the input property myInputProperty on the Angular component.

6.3.7 A7: Angular directives

Problem: Angular has two types of elements that appear in the DOM. The first type
is the Component, which looks for a given selector or tag name and replaces the original
HTML element. For example an AppRootComponent with the selector 'app-root' will
look for an <app-root> HTML element and replace it with the Angular component
instance. The second type is the Directive. Similarly, this looks for a selector, but instead
of replacing the original HTML element, this simply mounts to it and runs its own code
on it. An example of this would be a Blink directive that looks for the 'blink' HTML
class. When mounted, it periodically hides and un-hides the component.

Angular Elements only supports the conversion of Components to Web Components,
not the conversion of Directives. Since there are some elements in the 30MHz codebase
that use Directives, we need to make sure that these are supported as well.
Solution: While this might sound like a challenging problem since these are entirely dif-
ferent elements, the fix for this issue is surprisingly easy. Under the hood, Angular stores
the definition of a Component in the ɵcmp property. This is also the property Angular
Elements accesses to do the migration from Angular components to Web Components.

48

6.3 Angular Issues

Similarly, the definition of Directives is stored in the ɵdir property. By simply copying
the value of the ɵdir property to the ɵcmp property, we are able to trick Angular Ele-
ments into thinking a directive is a component. Surprisingly, this works, and the directive
works perfectly.

6.3.8 A8: <ng-content>

Problem: Angular uses the <ng-content> tag for content projection. Content pro-
jection is the ability for a component to take a set of children, which it can then place
anywhere in its DOM tree. This is effectively the same as the HTML <slot> tag 1. An
example of content projection can be seen in Listing 6.11. Content projection works fine
in most scenarios, but for unknown reasons, it sometimes does not work. The result is
that child elements simply do not show up.
Solution: Our solution is once again quite simple; we take advantage of the fact that
the <ng-content> and <slot> tag do the same thing and append a <slot> tag to
every occurrence of an <ng-content> tag in the source code. This ensures that when the
<ng-content> tag does not work, the <slot> tag takes over instead. Since the browser
only allows a given child element to be projected into one spot (i.e., multiple <slot>

tags do not result in multiple copies of the child element), this approach will not cause
any problems in cases where <ng-content> does work.

1 // parent-component.html
2 <child-component>
3
4 </child-component>
5
6 // child-component.html
7 <div id="my-root">
8 <ng-content></ng-content>
9 </div>

10
11 // Effective DOM tree
12 <parent-component>
13 <child-component>
14 <div id="my-root">
15
16 </div>
17 </child-component>

1https://developer.mozilla.org/en-US/docs/Web/HTML/Element/slot

49

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/slot

6.3 Angular Issues

18 </parent-component>

Listing 6.11: HTML source code and its Angular Elements equivalent

6.3.9 A9: Angular Attribute Order

Problem: As previously described in Section 6.3.5, the order in which Angular attributes
are set is unknown. While we have fixed this issue for our Web Components in this section,
this same issue presents itself again in the writing of an Angular wrapper. This time the
problem is that components will be rendered before they have all of their input properties
set. This leads to the apparent issue where the wrong contents are rendered.

Another problem stems from our approach in Section 6.2.6. We pass a unique ID to the
child that is used to find the intermediary. When the child now receives an attribute that
starts with the special reference prefix, it looks up the given reference by finding the inter-
mediary and reading the attribute value. However, if the child receives such an attribute
before having received the unique ID of the intermediary, it is unable to resolve the value.
Since the order in which Angular attributes are passed is unknown, this situation arises
very often.
Solution: We get around these issues by handling the appending to the DOM ourselves.
Instead of having our Angular wrapper render the actual Web Components, we instead
have them render a Renderer component. This component is then passed the tag name of
the Web Component. We are now able to precisely control when a component is appended
to the DOM, as well as which attributes it gets and in what order. Since the Renderer
takes the place of the Web Component, it now receives all attributes. We wait until it
has received the very last attribute before we decide to create the child component. After
creating it, we apply all attributes the Renderer has received to the child, after which we
append it to the DOM. Since this process allows us such fine-grained control over the
rendering cycle, we are able to render the Web Component without any issues.

6.3.10 A10: Bundling Angular Imports

Problem: Angular provides a few ways to build projects. Two of which are in use by
us. The first option is to build a project as an application. This bundles everything into
a combination of browser-specific bundles. These bundles can then smoothly be loaded
by including them in the browser. This is the option we use for the Web Component
library. The second option is to build a project as a library. Building a project as a library

50

6.3 Angular Issues

preserves all typing information and allows it to be used by another Angular project. Since
we are building an Angular project, this is the option we need if we want to be able to
provide typings to developers who use our Angular wrapper.

However, we run into an issue after building. 30MHz uses the Font Awesome Pro 1

package for its icons. This is a licensed package that can only be downloaded when a
valid key is presented. Since some of these icons are also used in the CC UI library, it
needs to be bundled into the library to be able to work. Angular refuses to do this. They
recommend using peerDependencies 2 instead. While their reasoning for this is valid,
it does not apply in our case. Since third-party developers are unable to install the Font
Awesome Pro package without a license, they would run into an error when installing the
package. Previously, Angular had the embed option, which allowed for the embedding of
a given set of JS packages. This was eventually replaced with bundledDependencies 3,
and a little while later, it was deprecated 4. This leaves us with no native option to bundle
our dependency.
Solution: We fix this issue by programmatically changing the build artifacts Angular
outputs. There are three types of build formats, the FESM2015 (or flattened ESM2015),
ESM2015 , and umd formats. Bundling the Font Awesome Pro source code is fairly trivial
for the FESM2015 and umd formats since they are both single files. The ESM2015 for-
mat is a bit different. It consists of a folder that is essentially a clone of the source code,
with every TypeScript source file being replaced with a compiled JavaScript version and a
.summary.json file. This .summary.json file functions similar to a .d.ts file, in that
it provides type information of the file. In fixing our issue, we want to preserve this same
folder structure. This means that we can not simply pass the entry point to a bundler and
be done. On the other hand, we are also not able to feed every individual JavaScript file
to the bundler. This would result in every separate file including its own copy of the Font
Awesome Pro library, leading to a significant bundle size. Instead, we create a central
folder in the ESM2015 folder in which we store the Font Awesome Pro JavaScript bundle.
This folder functions the same as a node_modules folder. We now replace every reference
in the source files to point to this central location instead.

Problem: We now run into another problem. When the library that was just built is
used in an Angular project, the Angular compiler scans over all of its .summary.json files

1https://fontawesome.com/pro
2https://github.com/ng-packagr/ng-packagr/blob/v10.1.0/docs/dependencies.md
3https://github.com/ng-packagr/ng-packagr/issues/1106
4https://github.com/ng-packagr/ng-packagr/commit/0c52486

51

https://fontawesome.com/pro
https://github.com/ng-packagr/ng-packagr/blob/v10.1.0/docs/dependencies.md
https://github.com/ng-packagr/ng-packagr/issues/1106
https://github.com/ng-packagr/ng-packagr/commit/0c52486

6.3 Angular Issues

to build an AST with type information. It then finds the values that are exported, looks
up their type values in the AST, and exports those that correspond to them. In performing
this AST building process, the Angular compiler scans our included Font Awesome Pro
folder for .summary.json files in order to extract definitions. Since those do not exist,
an error is thrown.
Solution: The obvious approach to this problem is the following. We generate and
bundle along the .summary.json files. This will provide Angular with the definitions it
needs. The downside to this is that Angular will recursively perform this AST building
process, meaning that it will first scan Font Awesome Pro, then its dependencies and their
dependencies. All of these files would need to be included in the bundle simply to ensure
the Angular compiler does not throw an error.

Instead, the solution is to simply remove any reference to our bundled Font Awesome
Pro library from the .summary.json files. Now that there is no longer a reference, the
Angular compiler will simply skip over it. Since the Font Awesome Pro library is not
exported, the Angular compiler never has to export any of its type information, meaning
it does not actually need this data.

6.3.11 A11: Angular Ivy

Problem: Angular has released a new version of its compiler called Ivy 1. This Ivy
compiler is set to replace the previous View Engine compiler. Angular does not allow the
use of Ivy for projects built as libraries for now 2 both because of compatibility reasons
and because Ivy is not seen as stable enough as of the writing of this paper. This forces
us to use the View Engine compiler instead. This compiler contains several bugs, one of
which is causing the build to fail entirely in our case 3. This bug is marked as Fixed by

Ivy; however, we are unable to use Ivy.
Solution: The only other fix to this issue seems to be the disabling of AOT (or ahead-of-
time compilation 4 and it is the solution we have applied to this problem. Unfortunately,
the disabling of AOT introduces significant overhead during the loading of the built li-
brary, an issue that we have not been able to fix. As will be mentioned in the results
section, this increases the load time of the Angular wrapper to an unacceptable level. We

1https://angular.io/guide/ivy
2https://angular.io/guide/ivy#maintaining-library-compatibility
3https://github.com/angular/angular/issues/25424
4https://github.com/angular/angular/issues/25424#issuecomment-465643237

52

https://angular.io/guide/ivy
https://angular.io/guide/ivy#maintaining-library-compatibility
https://github.com/angular/angular/issues/25424
https://github.com/angular/angular/issues/25424#issuecomment-465643237

6.4 Optimizations

have chosen to still disable AOT compilation as it shifted the issue from a blocking one
(the inability to compile the code at all) to a performance issue.

6.4 Optimizations

After finishing the CC UI library, we started looking for performance optimization oppor-
tunities. By looking through the Chrome profiler trace, we were able to find some easy
performance improvements. These are discussed in detail below.

6.4.1 O1: Reduce time searching for CSS

We provide developers with a CSS file they should include in their final index.html file.
This file contains the styles required to make the CC UI library work. We refer to this
CSS file as the CC CSS file from now on.

As mentioned in Section 6.2.1, we find the CC CSS file on the page and copy it into
every component instance. Since there can be many more stylesheets than just the CC
CSS file, we need to scan every stylesheet and check whether it is the one. This searching
process consists of the following steps.

• Get a list of all stylesheets on the page, this includes both <style> tags and
<link rel="stylesheet"> tags.

• Iterate through every stylesheet.

• Iterate through every rule.

• Compare the current rule with a specific marker value that signifies the CC CSS file.
If it matches, move on to the next step

• Add this stylesheet to the list of CC CSS files and move on to the next stylesheet.

While we did implement some caching, making sure this process only runs a single time,
this process still has a significant performance impact. This performance impact scales
linearly with the size of the stylesheet, meaning that a stylesheet with more rules takes
longer to scan. It takes about 16ms to scan through a stylesheet of 1667 lines in order to
find the marker rule on the machine mentioned in Section 5.4. In addition to scaling with
the size of the stylesheet, this number also scales with the number of stylesheets. Since it
iterates through every available stylesheet, including a big stylesheet will vastly increase

53

6.4 Optimizations

loading times. A rough formula for this performance impact in milliseconds can be found
in the equation below, with SS being a set of all stylesheets and LOC being the number
of lines of code.

tms =
∑
i∈SS

iLOC

100

We improve this process in two ways. The first step is to stop scanning after we find
the marker simply. Instead of looking for other CC CSS files, we simply stop and return
early. Since we know that there is only a single CC CSS file that applies to our Web
Components, we can make this change. The performance impact of this change is hard
to express in a single number since it largely depends on the stylesheets on the page, but
this performance improvement saves about 1ms per 100 rules in stylesheets that are not
the CC CSS file.

The second step is to ask the developers to help us in this process. We ask them to add a
simple cow attribute to the <style> or <link rel="stylesheet"> tag that contains
the CC CSS file. Since the developer knows which file contains our supplied CSS file, they
should easily add this attribute. At runtime, we check whether any stylesheet tags have
a cow attribute. If there are, we can skip the entire process of finding the CC CSS file.
Since this process was performed as the first component was rendered, this change saves
about 16ms on the first component’s render time.

6.4.2 O2: Move CSS searching to initial load

While the above fixes provide excellent performance improvements, it may very well be
possible that the developer does not add the cow tag, preventing our performance im-
provements from applying. The performance impact of the CSS search is still considerable,
and the fact that it is run during the rendering of the first component significantly in-
creases its render time. Since these render times tend to be around 16ms by themselves,
a 16ms increase is enormous.

We remove this performance impact from the first render by moving it to the moment
the CC UI library is initialized. To ensure we do not add any time to the initial load,
we wait until the browser is idle by calling window.requestIdleCallback . This ensures
that the process of finding CSS is performed while the browser is idle instead of it blocking
an important operation such as component rendering.

54

6.5 JS Framework Wrappers

6.5 JS Framework Wrappers

To improve the developer experience, we wrote JS framework wrappers for a total of three
JS frameworks, namely ReactJS, Svelte and Angular. In ReactJS, complex attributes for
Web Components do not work natively. A wrapper for ReactJS was required in order to
get the CC UI library to work in the first place. Since ReactJS provides good tooling
when it comes to components and their properties, we felt it was a good idea to make
use of this by providing typings for the CC UI library ReactJS wrapper. The second JS
framework is Svelte. While Svelte works perfectly with Web Components out of the box,
we created a wrapper to provide typings for the developers similar to ReactJS. The last
JS framework is Angular itself. Angular also provides tooling, including built-in checking
of component properties, which we felt we had to provide.

We also looked at different JS frameworks but found most of them to have little to
no tooling for HTML elements. The UI libraries we looked at were Vue (v2 and v3) 1,
Polymer 2, lit-element 3, and wc-lib 4.

In creating these wrappers, we started off by extracting the required component and
type data from the components’ source files. For example, the list of input properties, as
well as their types and descriptions, need to be known. Similarly, all events emitted by the
component, their types, and descriptions also need to be known. Finally, we also need to
collect some metadata on the component itself, such as the name, tag name, and whether
it has child elements. We extracted all this data by using the typescript package 5. This
package allows for the parsing of TypeScript and JavaScript code. This code is turned
into an abstract syntax tree (AST) with added type information, after which we are able
to iterate through it. We extract all this data and turn it into a common format to be
re-used by the various scripts that generate JS framework wrappers.

After collecting this data, we are able to generate the various JS frameworks. Gener-
ating wrappers was a reasonably smooth process for most JS frameworks. It consisted
of iterating through the extracted component data and generating source files written in
the language of the JS framework. These source files were then fed into a bundler and
bundled into the wrappers. This process went smoothly for both the ReactJS and Svelte

1https://vuejs.org/
2https://www.polymer-project.org/
3https://lit-element.polymer-project.org/
4https://www.npmjs.com/package/wc-lib
5https://www.npmjs.com/package/typescript

55

https://vuejs.org/
https://www.polymer-project.org/
https://lit-element.polymer-project.org/
https://www.npmjs.com/package/wc-lib
https://www.npmjs.com/package/typescript

6.5 JS Framework Wrappers

wrapper. During the process of creating an Angular wrapper, on the other hand, we faced
a few challenges. These challenges are described in detail below.

56

7

Results

After collecting the metrics described in Chapter4 over the created CC UI library, we are
able to compare the CC UI library to the original Angular components, the various JS
framework wrappers, and various other UI libraries. In the following sections, the various
metrics are broken down, and the results are compared between the various libraries.

7.1 Render Time

The render time metric allows us to evaluate the direct performance impact on users once
the page has loaded. We first compare the CC UI library to the original Angular compo-
nents and the other JS framework wrappers. This allows us to evaluate the performance
impact added by the process of migration to Web Components, as well as the performance
impact added by the JS framework wrappers. After this, we compare the CC UI library
to the UI libraries listed in Table 4.2, allowing us to evaluate the performance of the CC
UI library relative to UI libraries as a whole.

7.1.1 Cow Components

As mentioned in Chapter 5, we have measured three basic components in particular that
every UI library contains. These are the Button, Switch, and Input. We have measured
the time needed to render 1 instance, 10 instances, and 100 instances of this component.
The various render times for the cow-components UI libraries with these numbers of com-
ponents can be seen in figures 7.1, 7.2, and 7.3 respectively. We first take a look at the
single-component render times. When we compare the performance of the CC UI library
with the original Angular components, we find the CC UI library’s median render time
to be 81% and 100% higher for the Input and Switch components, respectively, with the

57

7.1 Render Time

mean render time for the Button being 41% lower. Other than the Angular wrapper’s
Button (which is 100% slower), the wrappers’ render times are very similar. The Reac-
tJS and Svelte Button rendering times are 6% and 12% lower, respectively, with both
the Input and Switch render times being between 172% and 190% higher. From this, we
can conclude that, although there is a full Angular root running for each component, the
performance impact for a single component is minimal. Now taking a look at the render
times for 10 and 100 components, we start to see some big differences. The Web Compo-
nents version can still keep up with the original components when it comes to rendering
10 components, being 5% faster, 144% slower, and 111% slower for the Button, Input, and
Switch components, respectively. When rendering 100 components instances, however, it
is eclipsed by the original components. Render times are 250%, 393%, and 265% slower
for the Button, Input, and Switch, respectively. It seems that the impact of creating a
new Angular root for each component does become significant with many components.
Additionally, the render times for the various JS frameworks start to differ quite a lot.
We see a trend of the ReactJS and Svelte wrapper growing further away from the Web
Components version, with the average of the component render times increasing by 339%
for the ReactJS wrapper and 597% for the Svelte wrapper. The Angular wrapper moves
away even further, with the average of its component render times increasing by 735%. It
seems that the performance impact for rendering a relatively small amount of components
is minimal, while it scales up relatively quickly with a greater number of components. The
fact that picking a JS framework to develop in is especially interesting, potentially costing
a difference of 150ms over Web Components or 50ms over a different framework.

7.1.2 UI Libraries

We now compare the render times of the various UI libraries. Since the number of UI
libraries we are comparing is very high (coming in at 29 total), showing them all in one
figure makes for a very cluttered view. Instead, we compare a single component at a time.
We have chosen to discuss the Button component in this section, however a complete
overview can be found in Figures 1, 2, and 3. The render times of the Button component
for the various UI libraries for 1, 10 and 100 components can be found in figures 7.4, 7.5,
and 7.6 respectively.

We, first of all, find that there are large differences in render times even within UI
libraries that share the same framework. For example the render time for a button in
react-bootstrap is 57% faster than material-ui 64% faster than semantic-ui-react.

58

7.1 Render Time

Figure 7.1: Render times of a single Button, Switch, or Input component (CC UI only)

Figure 7.2: Render times of ten Button, Switch, or Input components (CC UI only)

59

7.1 Render Time

Figure 7.3: Render times of one hundred Button, Switch, or Input components (CC UI only)

In cases where this performance difference is relatively small, this has to do with the li-
braries themselves, but in a few cases, this has to do with the type of library. These libraries
(react-bootstrap, ng-bootstrap, and ngx-bootstrap) make use of a CSS framework,
as laid out in section 2.5. As such, they are significantly faster and are essentially in a
different category from the CC UI library, which is JS-based.

When we ignore these outliers, we can draw some conclusions on the average render times
of the various frameworks. We first take a look at the single-component render times in
Figure 7.4. We can see that Svelte UI libraries are generally swift, together having an
average render time of 11.6ms. This falls in line with other performance benchmarks 1.
After this, Vue (12ms) and the UI libraries using Web Components (19,8ms) are the
fastest. Interestingly, Web Components are slower than UI libraries using Svelte. Since
Web Components are a native technology, one would be lead to believe that they would be
faster. This might have something to do with how the authors of the UI libraries created
their Web Components. It could be that their approach imposes a significant performance
impact. The following frameworks when it comes to render time performance are Angular
(29ms) and ReactJS (35ms). They are pretty close in performance, both being significantly

1https://rawgit.com/krausest/js-framework-benchmark/master/webdriver-ts-results/table.
html

60

https://rawgit.com/krausest/js-framework-benchmark/master/webdriver-ts-results/table.html
https://rawgit.com/krausest/js-framework-benchmark/master/webdriver-ts-results/table.html

7.1 Render Time

Figure 7.4: Render times of a single Button. The reduced size CC UI library is the build of
the library with less components, as described in Section 5.6.

61

7.1 Render Time

Figure 7.5: Render times of 10 Buttons. The reduced size CC UI library is the build of the
library with less components, as described in Section 5.6.

62

7.1 Render Time

Figure 7.6: Render times of 100 Buttons. The reduced size CC UI library is the build of the
library with less components, as described in Section 5.6.

63

7.2 Load Time

slower than other frameworks. The previously mentioned performance benchmarks again
support this.

We now apply our findings to the CC UI library JS framework wrappers. In our case,
the Web Components version is the fastest simply because every other wrapper builds on
top of this version. This means that it is impossible for another framework to be faster
than it. We see this as well in the results, with the Web Components version coming
in at 10ms. After that, the Svelte wrapper is the fastest, with a render time of 15ms.
Interestingly, however, the ReactJS wrapper (16ms) is only slightly slower than the Svelte
wrapper, while the Angular wrapper is significantly slower than both of them, coming in
at 34ms. This is in contrast to what we just found, where both Angular and ReactJS
were slow. It could be that the various internals of ReactJS that keep track of state and
properties are slow. These are likely to be used a lot by regular ReactJS UI libraries,
which need to handle their state entirely in ReactJS, while our ReactJS wrapper renders
a component and passes it its properties once, making minimal use of methods exposed
by ReactJS. In general, the CC UI library seems to be able to compete with the render
times of other UI libraries, being faster than the vast majority of them.

7.2 Load Time

The load time metric allows us to evaluate the initial performance impact of the CC
UI library. Again, we compare the various wrappers to each other as well as the original
Angular components. As we elaborate on later, the Angular wrapper is significantly slower
than any other UI library. For this reason, we split every figure into both a figure with
and without the Angular wrapper. This should help show the scale of both this significant
outlier while not reducing the scale’s precision for other UI libraries.

7.2.1 Cow Components

The load time of the CC UI libraries can be seen in Figure 7.7 (without the Angular
wrapper) and Figure 7.8 (with the Angular wrapper). When we compare the load time of
the CC UI library to the load time of the original 30MHz dashboard, we find that the CC
UI library is significantly slower, coming in at 385ms compared to the 30MHz dashboard’s
199ms. This is likely because the 30MHz dashboard has been optimized specifically for
the initial load time. It loads the minimum amount of JavaScript needed to render the
page. After this, other files are only loaded on an as-needed basis. The CC UI library, on
the other hand, has to be contained in a single file. Splitting it up into multiple files and

64

7.2 Load Time

Figure 7.7: Load time of the main JS bundle (CC UI only, without Angular wrapper).

65

7.2 Load Time

Figure 7.8: Load time of the main JS bundle (CC UI only).

66

7.2 Load Time

instructing third-party developers to have multiple JS bundles to make the CC UI library
work would be a terrible developer experience. Concatenating the files into a single big
bundle means all of the code has to be parsed and executed, slowing down execution by
quite a lot. Comparing the various wrappers to each other, we find the ReactJS and Svelte
wrappers to have load times of 395ms and 434ms, respectively. This is only slightly slower
than the CC UI library. The added load time is likely to be added by the JS frameworks
themselves. Finally, we can see that the Angular wrapper is by far the slowest, with a
load time of 4000ms. This is not entirely unexpected. As mentioned in Section 6.3.11,
we had to disable AOT compilation for the Angular wrapper. This means all Angular
compilation happens in the browser instead of during the compilation of the JS bundle.
This is likely to be the reason why the Angular wrapper is so slow.

Taking a look at the reduced-size CC UI library, we find a loading time of 223ms for the
CC UI library. This is only 12.6% higher than the 30MHz dashboard. It appears that a
significant portion of the loading was spent on these removed components. Further, the JS
framework wrappers loading times are 588ms, 238m, and 277ms for the Angular, ReactJS,
and Svelte wrappers, respectively. Again, the difference between the ReactJS and Svelte
wrappers is minimal, with the Angular wrapper being significantly slower.

7.2.2 UI Libraries

The load times of other UI libraries can be seen in Figure 7.9 (without Angular wrapper)
and Figure 7.10 (with Angular wrapper). Other UI libraries largely differ in load time
as well. Svelte UI libraries are by far the fastest, having an average load time of 2.64ms,
followed closely by Web Components UI libraries at 11ms and ReactJS UI libraries with
22ms. After this, Vue UI libraries are the fastest, with a load time of 57ms. Finally,
we have Angular, which with an average loading time of 106ms, is by far the slowest.
Interestingly, we can see that the different distributions of multi-framework UI libraries
follow this same pattern. For example the prime-ng UI library is 329% slower than the
prime-react UI library. Similarly, onsen-angular is 167% slower than onsen-react

and 308% slower onsen-web-components. This could also be one of the factors that are
causing our Angular wrapper to be slower, although the lack of AOT compilation is still
by far the most influential factor.

67

7.2 Load Time

Figure 7.9: Load time of the main JS bundle (without Angular wrapper).

68

7.2 Load Time

Figure 7.10: Load time of the main JS bundle.

69

7.3 Bundle Size

7.3 Bundle Size

Bundle size is a more abstract representation of the previous metric, allowing us to take
a look at the impact of just the bundle size itself. This excludes any performance impact
that can be attributed to poorly optimized code. This also allows us to look at what the
performance impact of the Angular wrapper would be if there was no issue with the AOT
compilation.

Figure 7.11: Size of the main JS bundle.

The various bundle sizes can be found in Figure 7.11. We can first of all see that the
bundle sizes correlate strongly with the load times. From this, we can conclude that they

70

7.4 Paint time

are an excellent representation of the load time metric. We find sizes average sizes of
57KB, 120KB, 204KB, and 385KB for Svelte, Web Component, ReactJS, and Vue UI
libraries, respectively. As expected, Angular is by far the biggest, with a size of 1422KB.
This same trend is also visible in our various wrappers. The Angular wrapper is by far
the biggest, with a size of 11,251KB. With the strong correlation between load time and
bundle size, we can conclude that a large part of the Angular wrapper’s slow load time
can be attributed to the large bundle size.

7.4 Paint time

The paint time time metric should give us an idea of the real-world loading time of the CC
UI library. As described in Chapter 5, we replicated a page containing all components in
the various distributions of the CC UI library. This means that all versions are rendering
essentially the same page but in their own framework.

The resulting paint times can be found in Figure 7.12. We have included both the
First Paint and First Contentful Paint metrics, which are entirely the same for all
the wrappers, only differing for the 30MHz dashboard. We find a first paint of 194ms
and a first contentful paint of 233ms for the 30MHz dashboard. The Web Components
version of the CC UI library has a first paint (and first contentful paint) of 25ms. This is
87% faster than the 30MHz dashboard. This is likely because the dashboard also needs to
run background tasks. These are tasks such as checking whether a user has logged in and
fetching data. The CC UI library, on the other hand, has been stripped of this unneeded
functionality. Apart from this, we can see a familiar trend of ReactJS and Svelte being
slightly slower than the original, with first paint times of 618ms and 616ms, respectively.
Finally, we find the Angular wrapper to have a first paint time of 2029ms.

7.5 Quality of Web Components

In this section, we take a look at the quality of the Web Components in the CC UI library.
Note that we essentially measure the quality of the original Angular components. This
means that the conclusions drawn in this section only apply to the 30MHz codebase and
will not be the same for other source codebases.

Cyclomatic complexity: The cyclomatic complexities of the various UI libraries can
be seen in Figure 7.13. The cyclomatic complexity of the CC UI library is has a median
value of 2 and a mean value of 10.4. The average cyclomatic complexity of the medians

71

7.5 Quality of Web Components

Figure 7.12: First paint metrics for the various demo pages.

72

7.5 Quality of Web Components

Figure 7.13: Cyclomatic complexity of the various UI libraries.

73

7.5 Quality of Web Components

of all UI libraries is 17.5. Multi-framework UI libraries, in particular, have a very high
cyclomatic complexity. The median cyclomatic complexity for all onsen-based UI libraries
is 22, while the cyclomatic complexities for prime-react, prime-ng, and prime-vue are
31.5, 36, and 18 respectively. This makes sense since these libraries often try to share the
source code between the various frameworks as much as possible, leading to many imports.

Figure 7.14: Lines of code of the various UI libraries.

Lines of code: The amounts of lines of code can be seen in figure 7.14. Again we see
the same trend of the CC UI library being relatively low in complexity (and as such lines
of code), with the median lines of code being 26. The average of the medians of all UI
libraries is 108.75.

Structural complexity: The structural complexities can be seen in figure 7.15. This
time there is a large variation in the structural complexity of CC UI library components,
with the median being 2 and the average being 12.6. This outlier is likely to be the Chart
component, which is by far the biggest component. The average of the other UI libraries’
median structural complexity is 4.2. This suggests that the median structural complexity
of the CC UI library is relatively low, which is good.

74

7.5 Quality of Web Components

Figure 7.15: Structural complexity of the various UI libraries.

75

7.5 Quality of Web Components

Figure 7.16: Maintainability of the various UI libraries.

76

7.6 Time spent on the project

Maintainability: The maintainabilities can be seen in figure 7.16. The median main-
tainability of the CC UI library is 96, with the average median maintainability of the UI
libraries being 71. Higher maintainability is better, meaning the CC UI library scores
quite well in this metric. All together, we can conclude that the quality of the CC UI
library components (and as such, the Angular components they are based on) is quite
high.

7.6 Time spent on the project

While the technical results of this project are important, we also decided to take a look
at the business side of this project. An important factor here would be the amount of
effort required to complete this project. In total, this project took five months of fulltime-
equivalent (FTE) to complete. An estimation would be that about one month was spent
on Web Component related issues, three months on Angular related issues and one month
on creating JS framework wrappers, and one month on other tasks such as creating a build
pipeline and package distributions. Note that the time taken is entirely separate from the
number of components in the resulting UI library, meaning an added component would
not increase the time taken at all. Depending on the time required to build the UI library
from scratch combined with the time taken to maintain the UI library and adding new
components, this project could very well be worth it.

77

8

Threats to Validity

In this chapter, we cover threats to the validity of this study. We visit various categories
of threats to validity, as laid out in the work performed by Wohling et al. (12).

8.1 Conclusion Validity

A possible threat to conclusion validity would be the user study presented in Chapter 9.
Drawing a conclusion from such a low sample size would lead to a high risk of an invalid
conclusion. Instead, we opted to mark the resulting findings as mere indications to be
proven in future work.

8.2 Internal Validity

An internal threat to validity could be the measurement of our metrics being influenced
by external factors. As described in Section 5.7 we explicitly remove the factor of network
speed from our benchmarks. This leaves only the factor of available system resources as a
possible variable. In order to eliminate this factor, we took several steps. We first ensured
a clean testing environment by shutting down all unneeded background processes on the
test machine. This should vastly reduce the amount of fluctuation in available system
resources. Secondly, we ensured that only a single test is running at a time. This means
every test has the entire computer to itself (in practice, it likely only uses a single core)
and does not compete with other tests for system resources. Lastly, we apply all the steps
described in Section 5.5 which includes randomizing the order in which the tests are run
and increasing the number of tests to thirty measurements per test. This should ensure
that any possible fluctuations are smoothed out and shared across all tests.

78

8.3 Construct Validity

8.3 Construct Validity

In order to ensure that the results of the experiments can be generalized to the created
Web Component library, metrics that allow for the comparison of individual components
have to be found. In order to validate the quality of components, we use a set of metrics
that was validated through a user study by Martinez-Ortiz et al. (6), as described in
Section 3.4. In addition, we use objective performance metrics that are independent of
user perception. Gao et al. (9) describes such a problem for full web pages, where pages
could be perceived as loaded while parts are still loading. To avoid such a situation,
we have chosen three basic components that are either not loaded at all or fully loaded,
namely the Button, Input, and Switch. This allows us to measure the loading time of
individual components with a metric that is independent of user perception.

8.4 External Validity

A large number of the problems we face in this case study applied to Web Components
in general, as shown in Section 6.2. Still, a significant share of the problems is related to
Angular, more specifically Angular 10. Likewise, a significant part of them is specific to
the 30MHz codebase. Given a different codebase or a different Angular version, different
problems might be faced in the process of converting Angular components to Web Compo-
nents. While the issues might differ from framework to framework or even from Angular
version to Angular version, the results should be generalizable to other frameworks and
Angular versions. Bugs we encountered are likely to be fixed, and performance is likely
to only improve in future Angular versions, as has been the case with the Angular Ivy
compiler 1. Additionally, a significant amount of the faced problems apply to Web Com-
ponents in general, as shown in Section 6.2. For this reason, we believe that the feasibility
of the applied process will at worst stay the same and at best improve for other Angular
versions or JS frameworks. Further, while the specific UI library we created is dependent
mainly on the 30MHz codebase and its specific architecture and contents, we make sure to
compare the created CC UI libraries with the original 30MHz codebase itself, ensuring all
results are relative to the original. This should ensure we answer the research question for
a generalized case. If we were to compare the CC UI library solely to other UI libraries,
the answer to the research question would only apply to the case of 30MHz.

1https://angular.io/guide/ivy

79

https://angular.io/guide/ivy

9

Discussion

9.1 Discussion of Results

The results described in Chapter 7 show that the creation of a UI library from an existing
codebase is very well possible in an Angular application. Render times are only slightly
higher, remaining competitive with various other UI libraries. One negative aspect seems
to be that the render times increase pretty quickly with a higher number of components.
Further, load times are not significantly higher in all cases except the Angular wrapper.
This should result in a good user experience across the board, being slightly slower than
the original components but providing access to them in the most popular JS frameworks.
We can say that the answer to RQ1 is that it is definitely technically feasible to migrate
Angular components to Web Components.

While the technical results of this project are important, we also evaluated the business
side of this project. We find the time spent to be five months of FTE. We also took a look
at the degree to which this project interferes with the original codebase and its developers’
workflows through a questionnaire answered by the three front-end developers at 30MHz.
It should be noted that of the three front-end developers, two indicate they only work on
the front-end once a week or less. Additionally, the third front-end developer had recently
joined the company and has not witnessed the complete development process described in
this paper. As such, we are unable to draw definitive conclusions from the results of the
questionnaire, and we instead treat the results as mere indications.

In questioning these three front-end developers at 30MHz, we found that, on average,
they rated the impact of changes to the main codebase as a 2.6 on a scale from 0 (no
impact at all) to 10 (significant impact). For a process that interlocks with the main
codebase so heavily, this is a very low number, leading us to believe that the impact was

80

9.1 Discussion of Results

slim. Additionally, there are some new factors that developers have to keep in mind while
developing new components. An example of this is the need for better documentation
for components in order to ensure the automatically generated documentation is correct.
Another example would be the need to add a new UI component to the array containing
all components that are to be included in the UI library. On average, the developers
rated the impact of these changes to be a 2, signaling that the everyday impact is not
very large. Lastly, we asked developers how often the existence of this project blocked
their workflow. They all indicated they had not been blocked once, meaning this project
was executed entirely without blocking other developers’ workflow. These results suggest
that the business viability of the migration of Angular components to a UI library is
relatively high as well, leading to minimal impact on current developers and their workflow
while requiring relatively little time. Especially in a situation where there are many UI
components, the time spent on this project is significantly smaller than the time spent
recreating them.

All in all, we can conclude that the answer to RQ1 is that the process of migrating
Angular components to a Web Component UI library is feasible. We hope this case study
convinces businesses who are considering this process to take the steps we have taken over
creating an entirely new UI library. In addition to being used in the manner we described,
that is, the creation of a UI library for third parties, this process could also be applied to
components that are internal to a business. With the ever-increasing amount of platforms
with which users are able to interact (desktops, phones, tablets, televisions, smart fridges),
the number of platforms for which businesses need to develop an application also increases.
Since most of these platforms require different software stacks, Web Components could
provide a basis for generating components for other platforms. For example, the main
large web app can be built in Angular, with another small internal web app being built
in ReactJS (using the ReactJS wrapper), another internal web app built in Vue, and the
mobile apps built using React Native 1 or Apache Cordova 2.

What the results of this study do not tell us is the viability of migrating components from
any other JS framework to Web Components. In this case study, we specifically targeted
Angular, which provides the simple Angular Elements tool 3. Other JS frameworks might
not have such tools available, which might make this process less straightforward. However,
we believe that the process of migrating components from any other popular JS framework

1https://reactnative.dev/
2https://cordova.apache.org/
3https://angular.io/guide/elements

81

https://reactnative.dev/
https://cordova.apache.org/
https://angular.io/guide/elements

9.2 Checklist for Migration to Web Components

to Web Components may very well be significantly easier than from Angular components.
A large number of the issues we faced were Angular related, as described in Section 6.3.1.
Those issues were also by far the hardest to solve. Most of these issues would not appear
when using other JS frameworks.

9.2 Checklist for Migration to Web Components

Based on the work performed in Chapter 6 we present a checklist going over the various
steps required to perform a migration to Web Components. Note that this checklist
contains the steps likely to be required for conversion to Web Components in a general
sense and not the conversion specifically from Angular. In order to aid in the use of
the checklist, we include hints about how the described steps have been tackled in the
presented case study.

9.2.1 Checklist

1. Rendering components
Description: Wrap the individual components in Web Components that render
them to the DOM. When completed successfully, appending a given HTML tag to
the DOM such as <x-button> should render the corresponding component from
the original set of components. This process will differ from JS framework to JS
framework but will generally come down to the following steps:

(a) Iterate over every component in the set of original components

(b) Register a new Web Component for every component with the task of ren-
dering that component. Choose a tag name under which to register this Web
Component as a Custom Element.

(c) When rendering this Web Component, append a new ShadowRoot to it in the
DOM.

(d) To this ShadowRoot append a rendering root in whichever JS framework is
being used.

(e) Append the to-be-rendered component to the rendering root of the target JS
framework.

Reference Solution: In the case of Angular, this step is almost entirely taken care
of by Angular Elements. This is also the approach we used to solve this problem.

82

9.2 Checklist for Migration to Web Components

2. Compatibility (optional)
Description: While browser support for Web Components is relatively widespread,
it is not yet supported by every browser and every browser version. Depending on
the browsers that need to be supported, polyfills might be needed to add support
for unsupported features. An overview of browser support for Web Components can
be found on caniuse.com 1.
Reference Solution: As described in Section 6.2.2, we make use of polyfills to add
support for Web Components for those browsers that do not already support it. In
particular we make use of the custom-elements2 and custom-elements-builtin3

polyfills.

3. Global CSS application
Description: Generally styles are applied to components through a global stylesheet.
Wrapping components in ShadowRoots will cause this global stylesheet to no longer
apply to them, effectively removing any styling from them.
Reference Solution: We solve this issue by injecting this global stylesheet into
every ShadowRoot, making use of adoptedStylesheets to reduce performance
impact of this approach. A more detailed description of our approach can be found
in Section 6.2.1.

4. Application of Complex Attributes (optional)
Description: Most JS frameworks allow the passing of complex JS values to com-
ponents through attributes. This is in contrast to Web Components, which only
allow the passing of string values to components through HTML attributes. This
problem is described in-depth in Section 6.2.6. Note that this problem may no
longer be required when support for Web Components is completed in all major JS
frameworks. The state of support for Web Components can be found on the website
custom-elements-everywhere.com 4. If the migrated components do not need com-
plex attributes and work with string attributes as well, this step can be skipped.
Solution: Our solution to this problem is described in Section 6.2.6 as well. Essen-
tially, we create wrappers for three of the largest JS frameworks that wrap around
the created Web Components. The wrappers for these components then facilitate the

1https://caniuse.com/?search=components
2https://www.npmjs.com/package/@ungap/custom-elements
3https://www.npmjs.com/package/@ungap/custom-elements-builtin
4https://custom-elements-everywhere.com/

83

https://caniuse.com/?search=components
https://www.npmjs.com/package/@ungap/custom-elements
https://www.npmjs.com/package/@ungap/custom-elements-builtin
https://custom-elements-everywhere.com/

9.2 Checklist for Migration to Web Components

use of complex attributes by applying the complex attributes they receive directly
to the original component instance that is rendered inside of the Web Component.

84

10

Conclusion

In this case study, a number of aspects of migrating a set of Angular components to Web
Components are evaluated. These aspects include the question whether the migration
process is possible at all, what a possible performance impact is, and how the resulting
migrated components relate to other component libraries in the field. Chapter 6 describes
the various issues we faced during this project, eventually showing that it is possible to
migrated a set of Angular components to Web Components. In Chapter 7 we evaluate the
end resulting Web Components, comparing them to both the original Angular components
they were created from and various other UI libraries. We find that the newly created
Web Components are only slightly slower in rendering and take only about twice as much
time to load. The resulting components hold up very well compared to other UI libraries,
initially being faster than quite a few of them but becoming relatively slower as the number
of rendered components increases. This means that although the Web Components library
was migrateded from Angular components, it can compete quite well with other UI libraries
that were written from scratch. This confirms the technical feasibility of migrating Angular
components to Web Components.

Further, when looking at the business side in Section 7.6 and Chapter 9, we find that the
impact on the existing codebase and other developers is minimal. We also find the time
spent on this migration to be definitely worth it depending on the time required to build
the UI library from scratch combined with the time taken to maintain the UI library and
adding new components. This indicates that this migration is a worthwhile investment,
leading to freedom from maintaining two sets of components and the ability to easily add
a new component to the Web Components library without issues. It should be noted that
these results are not based on sufficient data to draw definitive conclusions. Instead, we
indicate that these were our results and leave definitive proof for future work.

85

Further future work could be done on improving the performance of the created Web
Components. Minimizing the performance impact of this migration process would aid in
making these components just as viable as components written from scratch. Additionally,
an interesting area to focus on is the list of issues faced during the migration process.
Future work could revolve around performing another such case study and comparing
the issues faced, extracting a list of issues that are always faced during this migration
process. Such a list would allow for the creation of structural solutions to these problems,
for example in the form of a freely downloadable JS package that aids in the migration
process.

Finally, one shortcoming of this thesis is that we were only able to evaluate the effec-
tiveness of migrating Angular components to Web Components. Not the migration of
components from any JS framework to Web Components. We conjecture that this process
should be just as feasible, with other frameworks likely taking significantly less time to
migrated than Angular. As such, we believe further research into the migration of compo-
nents from other JS frameworks to Web Components would be very beneficial, eventually
leading to a situation where we can conclude that components from all JS frameworks
can be migrated to Web Components, eventually making them re-usable across all JS
frameworks. Furthermore, future work could be done on improving the performance of
the created Web Components.

86

Appendix

.1 Code for creating a Hierarchical Injector in an Angular
Elements component

1 // This injector is provided by Angular to the root module
2 var rootInjector = ...;
3
4 // Create a fake injector
5 const _MOCK_INJECTOR = {
6 get() {
7 return {
8 run() {},
9 resolveComponentFactory() {

10 return {
11 inputs: [],
12 };
13 },
14 };
15 },
16 };
17
18 // Extract defualt NgElementStrategy
19 function getDefaultNgElementStrategy() {
20 const customElement = createCustomElement(EmptyAngularComponent , {
21 injector: _MOCK_INJECTOR ,
22 });
23 const proto = customElement.prototype;
24 const strategyInstance = proto.ngElementStrategy;
25 return strategyInstance.constructor;
26
27 }
28
29 // Get the NodeInjector class
30 function getNgInjectorClass(rootInjector) {
31 const componentFactory = rootInjector.get(ComponentFactoryResolver).

resolveComponentFactory(EmptyAngularComponent);

87

.1 Code for creating a Hierarchical Injector in an Angular Elements
component

32 const componentInstance = componentFactory.create(rootInjector , []);
33 return componentInstance.injector.constructor
34 }
35
36 // Get given HTML element's nodeinjector
37 function getNodeInjector(rootInjector , host) {
38 const hostContext = host.__ngContext__;
39 const lView = hostContext.lView;
40 const tNode = lView[1].data[hostContext.nodeIndex];
41 const NodeInjectorClass = getNgInjectorClass(rootInjector);
42 return new NodeInjectorClass(tNode, lView);
43 }
44
45 // Create a custom NgElementStrategy
46 class CustomNgElementStrategy extends getDefaultNgElementStrategy() {
47 originalInjector = this.injector;
48
49 connect(element): void {
50 if (this.injector === this.originalInjector) {
51 const localRoot = element.getRootNode();
52 const host = localRoot.host;
53 const nodeInjector = getNodeInjector(rootInjector , host);
54
55 this.injector = Injector.create({
56 providers: [],
57 parent: nodeInjector ,
58 });
59
60 return this._connectSuperWithDelayedInit(element);
61 }
62
63 return super.connect(element);
64 }
65 }
66
67 // Create a custom NgElementStrategyFactory that creates
68 // instances of our custom NgElementStrategy
69 class CustomNgElementStrategyFactory {
70 constructor(
71 private _StrategyConstructor ,
72 component ,
73 injector ,
74) {
75 this.componentFactory = injector
76 .get(ComponentFactoryResolver)
77 .resolveComponentFactory(component);
78 }

88

.2 Code used for render-on-demand functions for various JS frameworks

79
80 create(injector) {
81 return new this._StrategyConstructor(this.componentFactory , injector);
82 }
83 }
84
85 // Provide the CustomNgElementStrategyFactory to the createCustomElement
86 // function and create a new Web Component
87 const WebComponent = createCustomElement(AngularComponent , {
88 injector: rootInjector ,
89 strategyFactory: new CustomNgElementStrategyFactory(
90 CustomNgElementStrategy ,
91 AngularComponent ,
92 rootInjector
93)
94 })

Listing 1: The code for creating a Hierarchical Injector in an Angular Elements component

.2 Code used for render-on-demand functions for various JS
frameworks

1 const App = () => {
2 const [visibleComponent , setVisibleComponent] = React.useState(null);
3
4 window.setVisibleComponent = (componentName) => {
5 setVisibleComponent(componentName);
6 }
7
8 return (
9 { visibleComponent === 'Button' && <Button />}

10)
11 };

Listing 2: The render-on-demand function in ReactJS

1 <button *ngIf="visibleComponent == 'Button'" />

Listing 3: The render-on-demand function in Angular (HTML file)

1 @Component({
2 ...
3 })
4 export class AppComponent {
5 constructor(private _cd: ChangeDetectorRef) {
6 window.setVisibleComponent = (componentName) => {

89

.3 Render times for all components

7 this.visibleComponent = componentName;
8 this._cd.detectChanges();
9 }

10 }
11
12 public visibleComponent = null;
13 }

Listing 4: The render-on-demand function in Angular (JavaScript file)

1 <script>
2 window.setVisibleComponent = (componentName) => {
3 visibleComponent = componentName;
4 }
5
6 let visibleComponent = null;
7 </script>
8
9 {#if visibleComponent === 'Button '}

10 <Button />
11 {/if}

Listing 5: The render-on-demand function in Svelte

1 window.setVisibleComponent = (componentName) => {
2 if (componentName === 'Button') {
3 document.body.appendChild(document.createElement('x-button'));
4 }
5 }

Listing 6: The render-on-demand function in Web Components

.3 Render times for all components

90

.3 Render times for all components

Figure 1: Render times of a single Button, Switch, or Input component

Figure 2: Render times of ten Button, Switch, or Input components

91

.3 Render times for all components

Figure 3: Render times of one hundred single Button, Switch, or Input components

92

References

[1] Pedro J Molina. Quid: prototyping web components on the web. In
Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, pages 1–5, 2019. 9

[2] Marcel Mráz. Component-based UI Web Development. 2019. 13

[3] Ralf Lämmel and Simon Peyton Jones. Scrap Your Boilerplate: A Prac-
tical Design Pattern for Generic Programming. 38, pages 26–37, 03 2003.
13

[4] Trinh Ky Nam. UI library project setup for Vaimo group with modern
web technology. 2019. 13

[5] Jaume Armengol Barahona. Development of an Angular library for dynamic
loading of web components. B.S. thesis, Universitat Politècnica de Catalunya, 2020.
14

[6] Andres-Leonardo Martinez-Ortiz, David Lizcano, M. Ortega, L. Ruiz,
and G. López. A quality model for web components. pages 430–432, 11 2016.
16, 19, 24, 25, 79

[7] T. J. McCabe. A Complexity Measure. IEEE Transactions on Software Engi-
neering, SE-2(4):308–320, 1976. 16, 19

[8] Maurice H Halstead. Elements of software science. 1977. 16, 19

[9] Qingzhu Gao, Prasenjit Dey, and Parvez Ahammad. Perceived perfor-
mance of top retail webpages in the wild: Insights from large-scale crowd-
sourcing of above-the-fold qoe. In Proceedings of the Workshop on QoE-based
Analysis and Management of Data Communication Networks, pages 13–18, 2017. 17,
79

93

REFERENCES

[10] Vikram Nathan. Measuring time to interactivity for modern Web pages. PhD thesis,
Massachusetts Institute of Technology, 2018. 17

[11] Jasper van Riet, Flavia Paganelli, and Ivano Malavolta. From 6.2 to 0.15
seconds–an Industrial Case Study on Mobile Web Performance. In 2020
IEEE International Conference on Software Maintenance and Evolution (ICSME),
pages 746–755. IEEE, 2020. 17

[12] Claes. Wohlin. Experimentation in Software Engineering. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1st ed. 2012. edition, 2012. 78

94

	List of Figures
	List of Tables
	1 Introduction
	1.1 Reason for migrating to Web Components

	2 Background
	2.1 The Company
	2.1.1 Apps

	2.2 Web Components
	2.3 Angular Elements
	2.4 Javascript frameworks
	2.5 UI Libraries

	3 Related Work
	3.1 UI Libraries
	3.2 Angular Elements
	3.3 JS Framework Wrappers
	3.4 Metrics
	3.5 Load Time

	4 Study Design
	4.1 Research questions
	4.2 Metric definitions
	4.2.1 Source code metrics
	4.2.2 Size
	4.2.3 Load Time
	4.2.4 First Paint & First Contentful Paint
	4.2.5 Render Time

	4.3 Metric targets
	4.4 Analysis of results

	5 Experimental Setup
	5.1 Gathering components
	5.2 Structural Complexity
	5.3 Cyclomatic Complexity, Maintainability, Lines of Code
	5.4 Machine specifications
	5.5 Time-sensitive metrics
	5.6 Size
	5.7 Load Time
	5.8 Render Time
	5.9 First Paint & First Contentful Paint
	5.10 Number of Components

	6 Case Study
	6.1 Build Process
	6.2 Web Component Issues
	6.2.1 WC1: Global CSS
	6.2.2 WC2: Compatibility
	6.2.3 WC3: Tagname renaming
	6.2.4 WC4: Theming
	6.2.5 WC5: Non-string Attributes
	6.2.6 WC6: Complex Attributes

	6.3 Angular Issues
	6.3.1 A1: ng-deep
	6.3.2 A2: createCustomElement
	6.3.3 A3: EventEmitters
	6.3.4 A4: Hierarchical Injectors
	6.3.5 A5: ngOnInit
	6.3.6 A6: Casing in attribute names
	6.3.7 A7: Angular directives
	6.3.8 A8: <ng-content>
	6.3.9 A9: Angular Attribute Order
	6.3.10 A10: Bundling Angular Imports
	6.3.11 A11: Angular Ivy

	6.4 Optimizations
	6.4.1 O1: Reduce time searching for CSS
	6.4.2 O2: Move CSS searching to initial load

	6.5 JS Framework Wrappers

	7 Results
	7.1 Render Time
	7.1.1 Cow Components
	7.1.2 UI Libraries

	7.2 Load Time
	7.2.1 Cow Components
	7.2.2 UI Libraries

	7.3 Bundle Size
	7.4 Paint time
	7.5 Quality of Web Components
	7.6 Time spent on the project

	8 Threats to Validity
	8.1 Conclusion Validity
	8.2 Internal Validity
	8.3 Construct Validity
	8.4 External Validity

	9 Discussion
	9.1 Discussion of Results
	9.2 Checklist for Migration to Web Components
	9.2.1 Checklist

	10 Conclusion
	.1 Code for creating a Hierarchical Injector in an Angular Elements component
	.2 Code used for render-on-demand functions for various JS frameworks
	.3 Render times for all components

	References

